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Executive Summary 
ConnectFlow is Amentum’s suite of groundwater modelling software that combines a continuum 
porous medium (CPM) module and a discrete fracture network (DFN) module. ConnectFlow can be 
used very flexibly to model groundwater flow and transport in both fractured and porous media on a 
variety of scales. 

The following documentation is available for ConnectFlow: 
• ConnectFlow Technical Summary Document; 
• ConnectFlow Command Reference Manual; 
• ConnectFlow Verification Document; 

This document, the Technical Summary Document, provides information on the calculation 
methods used by ConnectFlow, which gives understanding of the mathematical basis for the results 
obtained. 

 

 

COPYRIGHT AND OWNERSHIP OF ConnectFlow 

The ConnectFlow program makes use of the TGSL subroutine library. 

All rights to the TGSL subroutine library are owned by Amentum. 

 

All documents describing the ConnectFlow program and TGSL subroutine library are 
protected by copyright and should not be reproduced in whole, or in part, without the 

permission of Amentum. 

 

ConnectFlow also makes use of the freely available LAPACK linear algebra library. 
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1 Introduction 
ConnectFlow is Amentum’s suite of groundwater modelling software that includes the capability to 
model continuum porous medium (CPM) models and discrete fracture network (DFN) models, as 
well as nested sub-models into a combined CPM/DFN model. Hence, ConnectFlow is very flexible 
tool for modelling groundwater flow and transport in both fractured and porous media on a variety of 
scales. 

This document provides a general overview of ConnectFlow, including a description of the equations 
solved and the numerical methods used. This document describes technical aspects of building and 
solving separate or nested CPM/DFN models. Additional more detailed information about the 
capabilities and potential applications of ConnectFlow is available from Jacobs on request. 

ConnectFlow is written in standard Fortran 2003 and is therefore portable across a range of 
computing platforms, from desktop PCs running windows to Linux clusters. The software is available 
from Amentum by contacting the support team (gw.support@global.amentum.com) or from a 
download at www.connectflow.com. 

ConnectFlow is also available through the international collaboration within the iCONNECT Club (see 
section 1.6.1). 

1.1 Documentation 
A comprehensive set of documentation has been produced for ConnectFlow. The following manuals 
are available: 
• ConnectFlow Technical Summary Document (this document). This document provides a general 

technical overview of the software, including a description of the equations solved and the 
numerical methods used. 

• ConnectFlow Online Help. Part of the ConnectFlow graphical user interface (GUI), it describes 
how to use ConnectFlow. It also includes tutorials covering the main functionality of the software. 

• ConnectFlow Verification Document. This document describes the testing of ConnectFlow’s 
capabilities. 

• ConnectFlow Reference Manual. A set of HTML pages that describe, in detail, the commands and 
keywords available in the ConnectFlow input language used to specify the model, the calculations 
to be carried out, and the post-processing required. The command hierarchy is reproduced by 
the hyperlinks between the pages. 

1.2 Continuum Porous Medium (CPM) Capabilities 
The Continuous Porous Medium (CPM) modelling module was the first part of ConnectFlow to be 
developed. It has been developed over a period of more than 30 years (since 1984) and has been 
verified extensively in international comparison exercises. 

The CPM module can be used to model the following physics and geometries:  
• groundwater flow in saturated and unsaturated conditions; 
• saline groundwater flow with density dependent on concentration; 
• coupled groundwater flow and heat transport with density dependent on temperature; 
• saline groundwater flow and heat transport with density dependent on concentration and 

temperature;  
• solute transport with chemical reactions; 
• groundwater flow and solute transport in a dual porosity system; 
• contaminant transport, including the effects of advection, dispersion, sorption and with solubility 

limitation; 
• radioactive decay chains, including interacting chains linked by solubility limitation of a common 

radionuclide; 

mailto:gw.support@global.amentum.com
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• flow and transport in 3D, 2D vertical sections, 2D areal and 2D radial geometries; 
• steady-state and time-dependent behaviour; 
• deterministic and stochastic continuum modelling; 
• sensitivity to model parameters, using the adjoint sensitivity method. 

The CPM module can be used to model the following features:  
• complex lithology distributions; 
• conductive and semi-impermeable fracture zones; 
• stochastic models of permeability and porosity; 
• 3D volumes of enhanced or reduced permeability; 
• boreholes, tunnels and shafts both in terms of geometry and as boundary conditions; 
• specified value (Dirichlet) and specified flux (Neumann) type boundary conditions; 
• non-linear infiltration model of surface recharge/discharge areas and magnitude; 
• hydrostatic boundary condition and outflow conditions for vertical boundaries; 
• time-varying boundary conditions to model land uplift, or time-dependent contaminant 

discharge; 
• sources of heat, salinity or contaminant at points or in volume. 

CPM models and results can be displayed by: 
• 3D visualisation system allows 3D rendering of finite-elements, rock types, permeability, 

variables, fracture zones, flow arrows, pathlines; 
• 2D plot output and numerical output includes: 

– plots of the finite-element mesh and its boundaries; 
– plots of contours of a variable on a surface; 
– plots of contours of a variable on a 2D slice; 
– plots of velocity arrows, showing direction and magnitude of the groundwater flow; 
– plots of pathlines either for steady state or for transient groundwater flows; 
– plots of backward pathlines, showing the region of influence of a borehole; 
– graphs of variables along a line; 
– graphs of the evolution of variables at a point; 
– graphs of data; 
– integrals (e.g. flux of groundwater across a plane); 
– variable values at specified points. 

CPM models have been used in the following applications: 
• Calculations in support of safety assessments for radioactive waste disposal programmes: 

– regional groundwater flow; 
– site investigation; 
– pump test simulation; 
– tracer test. 

• Modelling for groundwater protection schemes: 
– aquifer; 
– saline intrusion. 

• Modelling to design and evaluate remediation strategies; 
• aquifer contamination; 

– landfill site. 

The CPM module is used in support of the radioactive waste disposal programmes of many countries 
throughout the world, by both the nuclear regulators and by national disposal organisations and 
consultants working for these organisations. 
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The CPM module has a wide range of facilities for specifying the model domain, the properties of the 
rocks, fluids and solutes within the domain, the equations to be solved and the output options 
required. An advanced 3D visualisation package is available for a visual display of models and 
results. In addition to these standard facilities, many options are available that allow the user to 
customise the functionality of the module for a particular project. For example, it is possible for the 
user to specify a site-specific relationship between fluid density, solute concentration, fluid 
temperature and pressure. 

1.3 Discrete Fracture Network (DFN) Capabilities 
The discrete fracture modelling module has been developed over a period of more than 25 years 
(since 1992) and has been verified extensively in international comparison exercises (e.g. STRIPA 
and TRUE block). 

Simulation of fluid flow and transport in fractured rock is an essential tool for the study of water 
resources, oil and gas reservoir management, assessment of underground waste disposal facilities, 
evaluation of hot dry rock reservoirs, and for the characterisation and remediation of contaminated 
land management. It can be used to interpret field and laboratory data, to validate conceptual 
models, to make quantitative predictions, and to develop practical solutions for a range of 
environmental, reservoir engineering, and civil engineering problems. 

The DFN module is a finite-element software package for modelling fluid flow and transport in 
fractured rock. A discrete fracture network (DFN) approach is used to model fluid flow and transport 
of tracers and contaminants through the fractured rock. The DFN module incorporates fracture 
generation, flow simulation, upscaling, transport and 3D visualisation capabilities. The Graphical 
User Interface allows models to be generated and analysed quickly. A job submission (‘batch’) 
facility is included that allows additional options not yet implemented in the GUI to accessed - these 
features are indicated below.  

The DFN module has a number of sophisticated capabilities including: 

Geological modelling: 
• the flexibility to model a variety of scales varying from well/borehole scale to the regional/reservoir 

scales. Detail can be included to model heterogeneity of a single heterogeneous fracture as well 
as models with many tens to millions of fractures at a regional or reservoir scale. 

• the DFN approach allows users to compare aspects of their conceptual geologic models and field 
observations with simulated models.  This comparison includes, fracture orientation, size, 
transmissivity and flow distribution. An examination of the simulated network can be performed 
using hypothetical cores, stereonets, fracture maps and connectivity analysis. 

• generation of regular and irregular meshes and structural grids (e.g. ZMap, VIP, FEMGEN and a 
CAD format); 

• inclusion of deterministic fractures by specification within the DFN data or by importing a fracture 
file (e.g. GOCAD Vset, GOCAD Tsurf, Seisworks pointsets and other international formats). 
Deterministic Faults (or structures) can be used to control populations of stochastic fractures (i.e. 
proximity or ‘Damage Zone' models). For example, the DFN module allows the clustering of 
fractures around parent fractures, random points or surfaces. It also allows spatially varying 
fracture densities based on 3D maps of fracture drivers; 

• variable distribution laws for stochastic fracture parameters. The DFN module can generate 
stochastic fractures from a wide variety of probability distribution functions.  

• coupling of distributions/parameters to same features i.e. length-aperture relationships. 
• areal / volumetric distribution of stochastic fractures can be imported from external map or grid 

data- e.g. bed thickness, curvature (‘strain’), lithological (mechanical) variation. 
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• dynamic behaviour of ‘production fractures’ and present-day stress can be incorporated. 
• all scale ranges, from core observation to seismic scale, can be simulated and integrated into the 

final model. 
• high permeability ‘matrix streaks’ may be incorporated into models as extra flow conduits. 
• flow in the matrix can be represented by additional flow channels. 

The DFN module is able to: 
• simulate steady-state or transient flow in a fracture-network; 
• enable steady-state calculations to be performed on very large networks, because it uses an 

efficient finite-element scheme; 
• calculate the full equivalent continuum permeability tensor including off-diagonals, principal 

values and directions. This is automated to sample flows in several different directions. This can 
be used for upscaling, analysis of scale dependencies and determination of the representative 
elementary volume (REV); 

• calculate porosity and inter-fracture matrix block size; 
• identify connected fracture clusters around wells; 
• predict transient pressures and drawdowns at well bores for various types of pump tests; 
• calculate steady-state and transient inflows to tunnels and shafts; 
• calculate the effects of hydro-mechanical coupling. The hydraulic aperture is coupled to a stress 

distribution based on an analytical description of the stress field due to either rock overburden or 
a radial stress around a tunnel; 

• simulate tracer transport through the network using a stochastic particle tracking method. Output 
includes plots of breakthrough curves for many thousands of particles, particle tracks, swarms of 
particles at specified times or the points of arrival on the surfaces of the model. This can be used 
to calculate dispersion of a solute transported by the groundwater; 

• simulate mass transport for a variable density fluid. This can be used to model coupled 
groundwater flow and salt transport; 

• simulate unsaturated flow in fractured rocks; 
• analysis of percolation between surfaces; 

The DFN module can be used for the following applications: 
• simulation of a range of hydrogeological tests (hydraulic borehole/well tests, including constant, 

head, pressure and flow tests); 
• site and regional scale modelling to determine the effects of various forms of fracture flow to 

determine, pressure distributions, flows and travel times to discharge points under natural 
conditions; 

• to understand and simulate the behaviour of fracture-influenced sites/reservoirs by being able to 
parameterise and justify heterogeneous continuum models. For example, the estimation of 
equivalent parameters for input to conventional dual-porosity simulators; 

• simulation of solute transport (tracer) experiments;  
• simulation of hydraulic impact of a tunnel or shaft construction; 
• simulation of various simple hydromechanical models for the purpose of estimating the impact of 

rock overburden and in-situ stress. 

The DFN module has been used in the following industries: 
• water resources for the purpose of hydraulic test and tracer simulation, fractured reservoir 

estimation and parameterisation, and remediation studies (such as the estimation of fracture flow 
in dual porosity systems).  In addition, it can be used to model saline ingression and unsaturated 
flow; 
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• deep radioactive waste disposal, as both a tool useful for site-characterisation and safety 
assessments (simulation of hydrogeological tests and estimation of flow distributions and travel 
times to the biosphere); 

• oil and gas industry to aid well planning, simulation of various well tests (PBU etc), and the 
parameterisation of oil simulation software by calculation of up-scaled equivalent continuum 
parameters (permeability, porosity and matrix block-size and distribution); 

• hot-dry rock studies to estimate connectivity and parameters (permeabilities), to help analyse the 
effectiveness of the fractured reservoir; 

• civil engineering projects concerned with construction or remediation in fractured rock.  This 
includes the estimation of water ingress due to excavation of tunnels, studies of underground oil 
caverns, dam construction in fractured rocks, remediation or containment of contaminated 
fractured sites. 

1.4 Combined (CPM/DFN) Capabilities 
The module that allows the construction of a nested CPM/DFN models has been developed over a 
period of more than 20 years (since 1996). 

ConnectFlow can be used to model the following physics and geometries for combined models: 
• 3D models only; 
• single or multiple DFN sub-regions nested within CPM regions; 
• single or multiple CPM sub-regions nested within DFN region; 
• stratigraphic layers with DFN representation can be interfaced to layers with a CPM 

representation; 
• models are built up of grids with different patches being assigned to either a CPM or DFN 

subdomain; 
• nesting of detailed DFN models within nested CPM models using embedded (‘constraint’) grids to 

represent site-scale and region-scales; 
• stochastic DFN and CPM models; 
• steady-state and transient constant-density groundwater flow; 
• advective transport through a combined DFN/CPM based on a particle tracking approach. 

ConnectFlow can be used to model the following features: 
• local DFN models to represent the detailed flow in fractures around tunnels, shafts, canisters or 

boreholes nested within a CPM model that extends the model to appropriate boundaries; 
• detailed CPM models of tunnels, shafts and canisters within a DFN model to represent the 

interaction between flow in a fractured media and backfilled tunnels; 
• continuous representation of deterministic faults/fracture zones through the DFN and CPM sub-

models using consistent data formats and a combination of explicit fracture planes in DFN 
regions and an implicit fracture zone (IFZ) method in the CPM region. 

• quantifying conceptual uncertainties between DFN and CPM models. 

1.5 Quality Assurance 
A Quality Assurance (QA) programme defines a set of procedures for carrying out a particular type of 
work in such a way as to maintain the quality of the work.  A well designed QA programme plays an 
important role in computer program maintenance by ensuring that high standards of coding are 
adhered to. There are procedures for reporting and fixing program errors and that there is a system 
for testing and issuing new releases of the program which ensures that the new program gives the 
correct results for a standard set of test cases.   

ConnectFlow is maintained and developed under an appropriate QA programme [e.g. Morris et al., 
1996] by Jacobs.  The QA programme conforms to the international standard ISO 9000.  The 
Subversion source maintenance program is used to store all source code, documentation and test 
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data for ConnectFlow.  This automatically logs the author and date of each change to the system, 
and enables previous versions of the code to be accessed and recreated if necessary. All changes 
are thoroughly tested, and must be approved by the Software Manager before they are accepted.  A 
comprehensive set of test cases is used to test each new release.  The verification of the software is 
described in the ConnectFlow Verification Document. Through the ConnectFlow QA programme, 
Jacobs seeks to continually improve the quality and reliability of ConnectFlow. 

1.6 ConnectFlow Users 
ConnectFlow has been used by a significant number of organisations throughout the world, including 
the following: 
• Department of the Environment, UK; 
• United Kingdom Nirex Limited, UK; 
• RM Consultants, UK; 
• British Nuclear Fuels Limited (BNFL), UK; 
• Golder Associates, UK; 
• Entec, UK; 
• British Geological Survey (BGS) Keyworth, UK; 
• University of Bath, UK; 
• University of Birmingham, UK; 
• Gesellschaft fur Reaktorsicherheit (GRS), Germany; 
• Federal Office for Radiation Protection (BfS), Germany; 
• Federal Institute of Geosciences, Germany; 
• Swedish Nuclear Fuel and Waste Management Company (SKB), Sweden; 
• Swedish Nuclear Power Inspectorate (SKI), Sweden; 
• Kemakta Consultants, Sweden; 
• Conterra AB, Sweden.; 
• Agence Nationale pour la Gestion des Déchets Radioactifs (ANDRA), France; 
• National Co-operative for the Disposal of Radioactive Waste (NAGRA), Switzerland; 
• Colenco Power Consulting Ltd, Switzerland; 
• Swiss Federal Institute of Technology, Switzerland; 
• Diamo, Czech Republic; 
• Korea Atomic Energy Research Institute (KAERI), South Korea; 
• Korea Electric Power Corporation (KEPCO), South Korea; 
• Hyundai Engineering and Construction Company, South Korea; 
• Georgia Institute of Technology, USA. 

1.6.1 The iCONNECT Club 
The iCONNECT club (integrated CONtinuum and NEtwork approach to groundwater flow and 
Contaminant Transport) is Jacobs’ response to the desire expressed by those involved in radioactive 
waste management to address a range of generic and site-specific issues related to the evaluation of 
the geosphere as part of a safety assessment. 

The purpose of the iCONNECT club is to draw like-minded organisations together into a club in order 
to dilute the costs of addressing modelling issues, in particular those generic issues faced by 
organisations wanting to evaluate the performance of the geosphere as part of a repository safety 
assessment. The iCONNECT club acts as a forum for the focused application and enhancement of 
the ConnectFlow methodology, resulting in wide-ranging benefits to all participants. 
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2 Concepts within the Continuous Porous Medium model 

2.1 Relevant Physical Processes 
The aim of this section is to identify a list of physical processes relevant to groundwater flow and 
transport that can be investigated using a CPM model in ConnectFlow, and then to present the 
approach to the modelling of the phenomena that is adopted within ConnectFlow.  Many other 
processes that occur in subsurface flows (e.g. those relating to transport of radionuclides in the gas 
phase or colloidal transport) are not considered further because these processes are not included in 
the models that have been implemented so far.  The processes that can be explicitly modelled in a 
CPM model are summarised in the rest of this section.  The CPM models used are then discussed in 
subsequent sections. 

The following is a list of FEPs (features, events and processes) identified by the NEA as relevant to 
subsurface flow in the performance assessment of a repository: 

1.2.5 Hydrothermal Activity; 

1.3.7 Hydrogeological response to climate 

1.4.6 Groundwater extraction 

2.1.6 Hydrogeological changes and response 

2.1.8 Thermal changes and response 

2.2.3 Hydrogeological regime 

2.2.4 Hydrochemical effects 

2.2.5 Groundwater flow system 

2.2.6 Solute transport 

2.2.10 Dilution processes 

2.2.10 Heterogeneity 

3.1.1 Radioactive decay and ingrowth 

3.1.3 Water mediated transport (including advection, dispersion, diffusion and rock matrix 
diffusion.) 

3.1.5 Sorption / desorption processes. 

3.1.10 Dilution processes 

3.1.11 Transfer by human actions (drilling, mining, excavation, etc.) 

In the following sections, the conceptual model to represent these processes is described along with 
the parameterisation of the models. 

In each case, the theoretical and experimental justification for the treatment of the process in the 
model is presented.  In particular, the issue of whether the treatment is conservative or realistic is 
discussed. 
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2.2 Groundwater Movement 
The soils and rocks that make up the Earth’s crust generally are porous, that is they contain empty 
spaces which can be occupied by groundwater.  This empty space is the porosity of the rock, and is 
defined as the fraction of the volume of the rock that is accessible to groundwater.  If the spaces are 
interconnected then the groundwater may flow under the action of external forces [Jacobson, 1949; 
Bear, 1972 and 1979; Freeze et al., 1979; De Marsily, 1985].  Generally speaking, groundwater 
velocities are extremely small.   

Nevertheless, flowing groundwater can transport dissolved substances over significant distances if 
sufficient time is available.  In the context of a deep radioactive waste repository, it is important to 
ensure that groundwater movement does not return unacceptable quantities of radionuclides from 
the repository to the human environment. 

The most common approach to modelling groundwater flow, and the approach used in the CPM 
module, is the continuum approach.  The idea is to treat all the quantities of interest, such as the 
pressure in the groundwater, as quantities that vary continuously over space.  There are two ways of 
defining these continuous quantities.  In the first, the notion of a Representative Elementary Volume 
(REV) is introduced [Bear, 1972].  This is a volume of rock that is very large compared to length 
scales characteristic of the microscopic structure of the rock, but small compared to the length 
scales of interest from the viewpoint of groundwater flow.  The continuum quantities are defined as 
spatial averages over the REV’s.  In the second, the medium is thought of as being a realisation of a 
random process [De Marsily, 1985].  The quantities of interest are now defined as ensemble 
averages.  Although the two approaches are philosophically quite different, they lead to virtually the 
same governing equations for groundwater flow. 

In some rocks most of the groundwater actually flows through an interconnected network of 
fractures.  This leads to a quite different approach to modelling groundwater flow known as fracture-
network modelling, in which the flow through an explicitly modelled set of fracture planes is 
calculated [Jacobson, 1949; Bear, 1972 and 1979; Herbert et al., 1991a].  This approach is 
supported in the DFN module. One potential use of these fracture network models is to determine 
the appropriate values to use for the effective permeability of a block of fractured rock, if it is to be 
represented appropriately in a continuum model such as used in the CPM module.  Thus, the fact 
that the CPM module is based upon a continuum-porous-medium approach does not mean that the 
models described in this document cannot be used to represent flow and transport within a 
fractured rock.  Provided that the scale of interest in the flow and transport calculation is larger than 
the length scale of the individual fractures and is large enough to include several fractures, it is 
reasonable to use a porous medium approach to represent flow and transport through the fracture 
network. 

The movement of groundwater is described quantitatively by the specific discharge, q, sometimes 
called the Darcy velocity.  This is the volumetric rate of flow of water per unit cross-sectional area.  
The specific discharge, q, is calculated in the CPM module from Darcy’s law [Bear, 1972 and 1979; 
Freeze et al., 1979; De Marsily, 1985], 

𝒒 = −
𝒌

𝜇
(𝛻𝑃𝑇 − 𝜌𝑙𝒈) 

Equation 2-1 

This law is empirical.  However, it can be shown that Darcy’s law is basically an expression of the law 
of conservation of momentum for the fluid.  The fundamental model for flow of a viscous fluid is 
embodied in the Navier-Stokes equations [Batchelor, 1967] and in principle these could be used.  
However, it would be impractical and inappropriate to apply these equations in the geosphere 
models used in performance assessments.  The situation of interest is then the flow of fluid through 
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the connected void spaces in the rock.  In order to apply the Navier-Stokes equations it would be 
necessary to specify the geometry of the void space.  This is clearly impractical.  It would also be 
inappropriate.  Such a model would provide far more detail than is actually required.  The 
appropriate expression of the law of conservation of momentum for the fluid in these circumstances 
is given by Darcy’s law, which can be derived from the Navier-Stokes equations of fluid flow for 
certain simplified models of the microscopic structure of the rock (see e.g. Scheidegger, 1974). 

Darcy’s law was originally derived from experiments on flow through sand columns.  It has since 
been demonstrated experimentally to apply over a wide range of conditions.  Darcy’s law also forms 
the basis for innumerable calculations of groundwater flow in water resources engineering and of the 
production of oil in oil reservoir models.  It can therefore be considered to be a well-validated model, 
for the circumstances of interest.  However, it should always be borne in mind when constructing 
models based on this approach that deviations from Darcy’s law have been observed at very high 
flow rates, when the flow is not purely laminar [Bear, 1979; De Marsily, 1985; Scheidegger, 1974] 
(which can occur close to wells, for example).  Possible deviations from Darcy’s law have also been 
suggested for very small hydraulic gradients, where in some types of materials the flow may be zero 
below a critical value of the hydraulic gradient [De Marsily, 1985].  Theoretical considerations 
suggest that under transient conditions, an additional term will appear in Darcy’s law, although in 
practice this term will be negligible except at short times following a sudden large change in 
conditions [De Marsily, 1985].  The use of Darcy’s law can therefore be regarded as realistic, or at 
worst to lead to an overprediction of the flow rate, for the types of systems of relevance to a 
performance assessment. 

The question arises of what value to assign for the permeability of the rock, since, in practice, rock 
properties are rarely, if ever, homogeneous.  The approach adopted will depend on the nature of the 
rock system, and the quality of data available, but essentially it is necessary to assign an effective 
permeability to the hydrogeological unit, which will lead to the correct flow in an average sense. 

In the case of highly fractured rock, it may not be possible to assign an effective property that 
adequately reproduces the correct average flow behaviour.  In this case it may be possible to 
represent the system as two coexisting continua, one corresponding to the fractures, and one 
corresponding to the rock matrix [Warren et al., 1963].  In the steady state, this simplifies to a single 
continuum described by a single effective permeability, but in transient flow, pressure variations can 
be transmitted through the fractures more rapidly than through the matrix.  This type of model is not 
currently supported in the standard release of ConnectFlow, although a specially modified version 
has been used to study this type of system in the past.  In extreme cases, an explicit fracture-
network approach may be better able to represent the groundwater movement. 

The groundwater flow depends on the fluid viscosity, through Darcy’s law.  The viscosity will in 
general be a function of temperature, and can vary by as much as 50% over the range 10 - 100°C.  It 
may also be a function of salt concentration.  In ConnectFlow, this can be modelled by making the 
viscosity an arbitrary function of temperature and salt concentration. 

In unsaturated conditions, the accessible porosity is less than the saturated porosity by a factor 
called the saturation, S.  S is a function of pressure, and in ConnectFlow can be modelled as an 
arbitrary function of pressure.  The permeability is also normally reduced in the unsaturated case by 
a factor kr called the relative permeability.  The relative permeability can be modelled as an arbitrary 
function of pressure. 

It should be noted that ConnectFlow does not treat the generation or transport of gas, which may 
influence the movement of groundwater.  This approximation is neither realistic nor conservative, 
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but can be addressed by the use of other models specifically designed to model the effects of gas 
generation and transport [Agg et al., 1994]. 

2.3 Groundwater Pressure 
In hydrogeology, it is useful to distinguish between two different descriptions of the pressure 
associated with the groundwater at a given location. 

The first description is in terms of the total pressure, PT, which is the pressure commonly used in 
other branches of physical sciences and which would be measured using a device such as a 
manometer.  It is measured in units of Pascals.  The second description involves the “residual 
pressure”, PR, (also referred to as the “non-hydrostatic pressure”).  The residual pressure is defined 
with respect to the selected reference elevation (with respect to which all vertical positions are 
defined).  It is often the case in groundwater studies that the reference elevation lies above the 
location where the total pressure is measured (because the reference elevation is defined with 
respect to sea level or a convenient ground surface elevation).  The residual pressure, PR, is then the 
pressure that is obtained after subtraction from the total pressure of the hydrostatic pressure due to 
a freshwater column that extends vertically from to the location where the total pressure is measured 
to the reference elevation (see section 3.1).  This explains the name.  The residual pressure is also 
measured in units of Pascals.  If the reference elevation lies below the point at which the total 
pressure is measured then the residual pressure would actually be the total pressure augmented by 
that of a freshwater column of the appropriate length.  The residual pressure is a useful concept, 
because, according to Darcy’s law, groundwater flow is proportional to the gradient in the residual 
pressure (see section 3.1). 

The familiar concept of groundwater or hydraulic “head” [Bear, 1979] is a quantity closely related to 
the residual pressure.  Hydraulic head is the residual pressure divided by the specific weight of the 
groundwater (see section 3.1).  Hydraulic head is therefore measured in metres.  Hydraulic head is 
useful for two reasons: firstly, Darcy’s law can be conveniently formulated in terms of hydraulic head 
and hydraulic conductivity (the latter being a quantity depending on properties of both rock and 
fluid), and, secondly, hydraulic head is very easily measured in the field.  For a well that is only open 
to the formation at a particular level, the height to which water rises in the well is equivalent to the 
groundwater head at the level of the opening.  However, a more general formulation in terms of 
pressures is more convenient when it is necessary to treat cases in which variations in the 
groundwater density (e.g. due to variations in groundwater temperature or salinity) have to be taken 
into account. 

The total groundwater pressure, PT, can be calculated from Darcy’s law (Equation 2-1), together 
with the equation of conservation of mass, 

𝜕

𝜕𝑡
(𝜑𝜌𝑙) + 𝛻 ∙ (𝜌𝑙𝒒) = 0 

Equation 2-2 

These two equations lead to a single second-order equation for the total pressure, 

𝜕

𝜕𝑡
(𝜑𝜌𝑙) − 𝛻 ∙ (𝜌𝑙

𝒌

𝜇
(𝛻𝑃𝑇 − 𝜌𝑙𝒈)) = 0 

Equation 2-3 

This is the basic equation that is solved in the CPM module.  It is straightforward to formulate the 
pressure equation in terms of total pressure, residual pressure, or pressure head, and all three 
formulations are supported. 

In general, the density and viscosity of the water depend on temperature and on the groundwater 
chemistry, in particular the presence of solutes, especially salt.  Temperature and salt are in turn 
transported by the groundwater.  When the variations in temperature or salt concentration are large 
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enough to produce significant changes in density or viscosity, it is necessary to couple the solution of 
the groundwater flow problem to that of the heat or salt transport problem.  This is discussed in 
sections 2.4 and 2.5. 

2.4 Groundwater Chemistry 
Groundwater chemistry can affect groundwater movement by changing the density or the viscosity 
of the groundwater.  These changes are likely to be dominated by the presence of dissolved salt.  
This is because salt is the only mineral normally present in rocks in sufficient quantities and with a 
sufficient solubility to be found in groundwater in concentrations significant enough to affect its 
physical properties.  Salt is therefore normally the only dissolved mineral modelled in the CPM 
module.  This approximation is not necessarily conservative, but is likely to be realistic in all cases of 
interest. However, it is also possible to represent a wider variety of solutes, either as reference waters 
or as individual components. For the component representation, it is also possible to carry out 
chemical reaction calculations. 

In CPM models the density of the groundwater is generally modelled using a mass-fraction 
formulation: 

1

𝜌𝑙
=

𝑐

𝜌𝑐0
+
1 − 𝑐

𝜌0
 

Equation 2-4 

However, the user can specify the relationship between the groundwater density and the 
concentration of total dissolved solids, in order to reflect conditions appropriate to a particular site. 

The viscosity of the fluid is generally assumed to be independent of the salt concentration.  However, 
there is no fundamental difficulty in taking account of this effect.  Cases in which this has been done 
have been treated in the past. 

The model of the transport of salt by groundwater takes account of the same processes as that for 
radionuclide transport, i.e. advection, diffusion, hydrodynamic dispersion and anion exclusion.  In 
the conditions prevailing at depth, sorption of the salt ions is not usually considered to be a 
significant effect. However, chemical effects, such as dissolution/precipitation of minerals or ion 
exchange processes can be included. 

In principle, the groundwater chemistry can affect the transport of radionuclides by modifying the 
solubility limit of the radionuclides, and by increasing or decreasing the amount of sorption that they 
undergo.  These effects can be taken into account in a CPM model as follows. 

For some radionuclides it can be anticipated that the concentration in the repository will be 
maintained at the solubility limit until sufficient radionuclide has been removed to allow the 
concentration to fall below the solubility limit, whence the repository concentration becomes 
inventory limited.  The period of solubility limitation can be estimated, based on the groundwater 
flow rate through the repository (which can be estimated from the CPM model of the site), the 
repository volume accessible to the radionuclide and the radionuclide inventory.  The migration of 
the radionuclide from the repository, taking account of solubility limitation can then be modelled in a 
two-stage CPM radionuclide transport calculation.  In the first stage, which covers the time period of 
solubility limitation, the radionuclide concentration at the repository is maintained at the solubility 
limit.  The second calculation then uses the results of the first as an initial condition. 

In the CPM model, sorption is modelled by a linear equilibrium model, as described in section 2.6.5.  
This simple model is effectively characterised by a parameter Kd, the sorption distribution coefficient 
(equal to literature Kd multiplied by rock density).  In the current release of ConnectFlow, Kd is 
simply specified as a constant for each hydrogeological unit and is not explicitly related to the 
calculated groundwater chemistry in the unit.  However, if appropriate values of Kd are used, that 
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take into account the prevailing groundwater chemistry in different rock units, then the effect of 
groundwater chemistry on sorption can be modelled fairly realistically. 

2.5 Temperature / Heat 
The principal effect of changes in temperature in the far field is to cause changes to the groundwater 
density and viscosity, which leads to changes in the groundwater movement. 

Changes in density as a result of temperature changes are usually no more than a few percent, for 
any temperature normally encountered in groundwater.  The model used in the CPM module to 
simulate this change is to make the change in density equal to the product of the change in 
temperature and a constant called the coefficient of thermal expansion.  This model may not be valid 
for large changes in temperature, but the resultant changes in fluid density are sufficiently small for 
this to be of little significance to the resulting groundwater movement and pressure. 

Changes to the viscosity of the groundwater as a result of temperature changes are usually of more 
importance. 

It is also possible that changes in temperature may affect the solubility and sorption of radionuclides.  
These effects are not modelled in the current release of ConnectFlow. However, the effect of 
temperature on chemical reactions is modelled when reactive transport is being carried out. 

Temperature variations within the far field arise as a consequence of heat sources, and the transport 
of heat.  Various sources of heat are potentially relevant, such as the natural radioactivity of the rock 
and the radiogenic heating of the repository itself.  There are several ways in which these sources of 
heat can be represented in a CPM model.  Regions of specified temperature or specified heat flux 
can be identified or distributed heat sources can be specified.  The processes that result in the 
transport of heat are the same as or analogous to those that lead to the migration of radionuclides.  
However, one important difference is that heat energy can be conducted through the solid rock.  In 
many low permeability environments, where the water velocities are low, conduction of heat through 
the solid rock is the most significant heat transport mechanism. 

2.6 Radionuclide Transport 
In the following subsections, the processes that can result in transport of dissolved radionuclides by 
groundwater are described in more detail.  These processes can all be treated in the CPM module, 
albeit to different degrees of accuracy. 

2.6.1 Advection 
Advection is the process by which the dissolved radionuclides are transported simply by the 
displacement of the groundwater in rock pores or fractures.  The advective flux, FA, of a radionuclide 
is related to the specific discharge, q, (Equation 2-1) by 

𝑭𝐴 = 𝒒𝑁𝛼 Equation 2-5 
Although q has units of velocity, the actual water velocity in the pores is rather larger because the 
flow only takes place in the pores rather than over the whole area of the porous medium.  The 
average water velocity in the pores is 

𝒗 =
𝒒

𝝋
 Equation 2-6 

In some rocks, some water is mobile and some water is immobile, and only the mobile water is 
directly considered in transport, so  is the proportion of the rock volume taken up by mobile water, 
and is called the ‘transport’ or ‘flowing’ porosity.  In fractured rocks, for example, it is often the case 
that the water in the fractures is mobile and water in the intact rock matrix is much less mobile. 
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2.6.2 Molecular Diffusion 
Even when the driving forces are not sufficient for significant groundwater flow to occur, 
radionuclides will still migrate through the porewater as a result of molecular diffusion.  The flux will 
be smaller than in free water, both because of the restricted area in the porous medium over which 
diffusion occurs and because of the tortuous nature of the pores.  Fick’s Law, 

𝑭𝐷 = −𝐷𝑖𝛻𝑁𝛼  Equation 2-7 
links the flux per unit surface area of porous medium, FD, to the concentration gradient [Jost, 1960].  
Here, the intrinsic diffusion coefficient, Di, is less than the free water diffusion coefficient and is 
related to the latter by a scaling factor that depends on the porosity and tortuosity of the rock. 

Molecular diffusion in free water is a well-understood process and Fick’s law is generally accepted in 
the scientific community as a valid model of the process.  Models of diffusion in the presence of a 
porous medium are generally based on the application of scaling factors to the fluxes obtained from 
Fick’s law for diffusion in free water.  The scaling factors represent the effects of the presence of the 
solid material and of the tortuous nature of the void spaces.  The values of the scaling factors are 
based on the measurements of the migration of radionuclides in laboratory experiments. 

2.6.3 Hydrodynamic Dispersion 
Transport of a dissolved species through a porous medium does not simply involve movement along 
a single well-defined path in the direction of the local velocity.  Various processes act to spread the 
radionuclide about such a path and these processes are collectively termed ‘hydrodynamic 
dispersion’.  The hydrogeological properties of the rocks at any site will exhibit variability on all length 
scales.  As a result of this variability, different paths through the medium will have different path 
lengths and different travel times.  This variability in the transport paths is what gives rise to the 
processes of hydrodynamic dispersion.  Qualitatively, dispersion acts in a similar way to diffusion. 

Detailed, explicit modelling of the heterogeneity of the rocks at all length scales and of the resulting 
dispersion of radionuclides is not always practicable.  Effective parameters are therefore often used 
to represent this aspect of the behaviour of the system.  In such cases, dispersion is usually 
represented by a diffusion-like term in the transport equation, with the dispersive flux taken to be 
proportional to the concentration gradient, by analogy with Fick’s law [Bear, 1979].  Different 
amounts of dispersion are generally observed parallel to and perpendicular to the flow, and the 
dispersion coefficient is taken to be a tensor.  It is usually modelled by a ‘geometrical dispersivity’, 
where the coefficient is the product of the velocity and a dispersion length [Bear, 1979].  The 
dispersion length is generally larger in the direction of flow than transverse to it.  Using detailed 
models of heterogeneity, the dispersion lengths can be shown to be related to the length scale of 
heterogeneities in the medium [Dagan, 1988 and 1989; Gelhar et al., 1983]. 

Hydrodynamic dispersion is a very complex process, and the Fickian model is an approximation.  In 
general, very careful choices of the parameters that are used in the Fickian model will be necessary 
in order to ensure that the model is fit for purpose, or at least conservative.  The validity of the model 
for a particular case depends on the nature of the variability in the rock properties and the 
relationship between the distance travelled by the radionuclides and the length scale of the 
variability. 

One case that has been extensively studied is that in which the variability in the logarithm of the 
permeability can be represented by a Gaussian model with a well-defined length scale.  In this model 
the travel distance of interest ranges from values smaller than the length scale of the variability to 
values greater than the length scale of the variability.  Several analytical studies of the dispersive 
behaviour to be expected in such cases have been performed [Dagan, 1988 and 1989; Gelhar et al., 
1983].  The analyses are only valid for cases in which the variance of the log-permeability field is 
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small (less than 1) and for the conditions of uniform mean flow in an infinite domain.  Nevertheless, 
the analytical studies provide useful insights into the dispersion that is produced by the 
heterogeneity in the permeability field. 

It is found that the dispersive flux is proportional to the concentration gradient, but that the 
dispersion coefficients are not constant, as assumed in the Fickian model, but depend on the 
distance travelled.  The longitudinal dispersion coefficient, which characterises the dispersive 
spreading parallel to the mean flow direction, tends to a constant value, which for practical purposes 
is attained at distances equal to a few tens of the length scale of the variability itself.  The length 
scale of the heterogeneity and the variance of the log-permeability determine the asymptotic value 
of the longitudinal dispersion coefficient.  The transverse dispersion coefficients, which characterise 
the dispersive spreading transverse to the flow direction, tend to zero, so that, asymptotically, the 
transverse dispersion is not controlled by the heterogeneity but by the spreading process on a 
smaller scale than is represented in the Gaussian model, such as molecular diffusion. 

In most cases the variance of the log-permeability values for real rocks is greater than 1, so that the 
approximations made in the analytical studies are not strictly valid.  In order to investigate the 
dispersion produced by the heterogeneity in such cases, numerical Monte-Carlo studies are 
performed.  This means that numerical realisations of spatially correlated random fields are 
generated to represent the rock properties (generally the log-permeability).  Numerical calculations 
of groundwater flow and particle transport are then performed in each realisation and the results for 
the particle movements are analysed in order to assess the dispersion produced by the 
heterogeneity in the permeability. 

It is important to ensure that the random fields that are generated have the intended statistical 
structure.  A detailed discussion of this issue lies outside the scope of this document but it is noted 
that this requires a very careful choice of the parameters in the method that is used to generate the 
random field (see e.g. [Morris et al., 1997a]).  If the permeability field is not generated with sufficient 
accuracy, then the dispersive behaviour that is obtained from calculations of flow and transport 
through the field will also be inaccurate.  This was demonstrated in a Monte-Carlo study [Morris et 
al., 1997b] in which many realisations of a permeability field with a relatively small variance were 
generated.   

Calculations of groundwater flow and particle transport through the realisations of the permeability 
field were performed using the CPM module.  The variance of the permeability field had been chosen 
to be small and the conditions of the flow and transport calculations were set so that the analytical 
solution for the dispersive spreading of the particles [Dagan, 1988 and 1989] was valid.  The results 
from the CPM calculations were compared with the analytical solution in order to assess the 
accuracy of the numerical calculations.  It was found that the results of the Monte-Carlo study were 
very sensitive to the choice of the parameters used in the method used to generate the random 
fields.  With an appropriate choice of parameters, good agreement could be obtained between the 
numerical and analytical results.  This builds confidence in the numerical method and its use in 
circumstances in which the analytical approximations are not valid. 

It should be noted that this study also provides a useful and quite stringent test of the groundwater 
flow and particle transport algorithms used in ConnectFlow.  The fact that good agreement could be 
obtained between the analytical and numerical results for the dispersion of the particles indicates 
that then CPM model had provided an accurate solution for the groundwater velocities in a case with 
a heterogeneous permeability field.  This case therefore also builds confidence in the validity of 
ConnectFlow. 
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ConnectFlow has also been used to perform a Monte-Carlo study of flow and transport in a 
heterogeneous permeability field at a real potential repository site [Cliffe et al., 1993].  In that case, 
the statistics of the transmissivity field for the heterogeneous formation were inferred from borehole 
data at the site.  The variance of the log-transmissivity was much greater than 1.  The calculations 
were used to investigate a number of issues associated with the heterogeneity, for example, the 
impact of different levels of site investigation on the uncertainties in the calculated travel times from 
the repository. 

The validity of the Fickian model of dispersion and the investigation of alternative approaches, 
including models in which the heterogeneity is modelled explicitly are very active areas of research 
in many national programmes (e.g. [Baker et al., 1997; SKI, 1996; Norman, 1992]).  An appropriate 
and consistent treatment of heterogeneity on all length scales is an important aspect of performance 
assessment calculations (e.g. [Jackson et al., 1997]). 

2.6.4 Rock Matrix Diffusion 
The process of rock-matrix diffusion is potentially significant in many fractured rocks [De Marsily, 
1985; Neretnieks et al., 1980].  In such cases, most of the groundwater flow takes place through a 
network of interconnected fractures, which comprise the ‘flowing porosity’.  In addition to the flowing 
porosity, the rock matrix is itself porous.  Radionuclides can be transported from the pore water in 
the flowing porosity into the relatively immobile water in the low permeability rock matrix by 
diffusion.  This process retards the progress of radionuclides.  For non-sorbed radionuclides, it is a 
retardation mechanism, because they would otherwise be transported at a velocity determined by 
the water velocity and the accessible flowing porosity.  For sorbed radionuclides, rock-matrix 
diffusion also gives access to additional sorption sites away from fractures.  Thus rock-matrix 
diffusion increases radionuclide travel times; it also acts as an additional dispersive process, since 
radionuclides that have diffused into the rock matrix can diffuse back out over a period of time, 
increasing the spread of travel times between early and late arrivals. 

Understanding of the process of rock-matrix diffusion is developed both by a programme of 
laboratory experimental work [Baker et al., 1997] and by studies of rock-matrix diffusion in natural 
systems.  A number of approaches exist which allow this effect to be modelled realistically. 

2.6.5 Sorption 
The migration of radionuclides through the geosphere is retarded by a number of geochemical 
processes, some of which are grouped together under the label ‘sorption’.  ‘Sorption’ is defined as a 
set of processes, excluding the formation of a discrete phase, by which radionuclides are partitioned 
between the solution and a solid surface.  Of these processes, ion exchange and surface 
complexation appear to be the dominant processes of relevance in the geosphere.  Both of these 
processes are observed in natural geochemical systems [Baker et al., 1997].  Both ion exchange and 
surface complexation are rapid processes, with equilibrium being established in a timescale 
accessible through laboratory experiments.  In both cases, a relationship exists between the 
equilibrium concentration of radionuclide in solution and the concentration adsorbed on the mineral 
surface.  At its simplest, and especially at the very low aqueous concentrations that are relevant for 
radionuclide transport calculations, it can be assumed that the ratio of ‘adsorbed’ to ‘dissolved’ 
radionuclide is constant and independent of the concentration of radionuclide in the system.  This 
concept is termed ‘linear sorption’ and is a widely used model of these processes.  Radionuclides 
can also be removed from solution by the incorporation of the radionuclide in the mineral structure. 

In the model implemented in the CPM module, the geochemical retardation of radionuclides in the 
geosphere is represented as a simple linear sorption process characterised by a sorption distribution 
coefficient, Kd (equal to literature Kd multiplied by rock density).  The extent of sorption is measured 
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in laboratory experiments that are carried out over timescales of the order of months or years in 
which equilibrium conditions are attained.  It is therefore reasonable to assume that a similar 
equilibrium will be attained during the longer timescales of radionuclide transport through the 
geosphere.  The assumption of equilibrium will be reasonable provided that the timescale of any 
transients associated with the sorption process is much less than the timescale for radionuclide 
transport by advection and dispersion. 

The linear Kd approach to representing sorption is a simplification, since, for example, the 
experimentally measured sorption distribution coefficients are commonly observed to decrease at 
higher aqueous radionuclide concentrations.  However, Kd values may be appropriately chosen so 
that the extent of sorption is adequately approximated over the concentration range of interest.  
Research in the Nirex Safety Assessment Research Programme (NSARP) confirmed and increased 
confidence that the linear Kd approach is an appropriate representation for the radionuclides of 
interest [Baker et al., 1997]. 

2.6.6 Anion Exclusion 
Experimental observations indicate that the porosity of the rock matrix that is accessible by diffusion 
to some anionic species is less than that accessible to neutral species or to cations.  This is believed 
to be the result of charge effects.  Anions are excluded from a portion of the porosity owing to the 
effect of negatively charged mineral surfaces [Baker et al., 1997].  This effect can be represented in 
CPM models by using a simple exclusion factor, which is equivalent to the fraction of the porosity 
that is accessed. 

2.6.7 Effect of Organic Complexants 
Organic complexants may be present in the geosphere around the repository, although their 
concentrations will be diluted within the geosphere and they may undergo microbial degradation.  
The effect of the presence of organic complexants is to reduce sorption.  A programme of work in the 
NSARP has been undertaken to address the impact of such organic complexants [Baker et al., 
1997].  The effect of organic complexants can be represented in a CPM model by multiplying the 
sorption distribution coefficient that would be considered appropriate in the absence of organic 
complexants by a sorption reduction factor. 

2.6.8 Radioactive Decay and Ingrowth 
The processes of radioactive decay and ingrowth from parent radionuclides also affect radionuclide 
concentrations.  Models of these processes have the status of widely accepted physical laws.  
Representations of radioactive decay are easily implemented as a sink term in CPM models of 
radionuclide transport.  Accurate representation of the processes of decay and ingrowth for several 
members of a decay chain may require the simultaneous solution of models of radionuclide 
transport for several radionuclides.  The CPM module can treat chains with up to 48 members 
(depending on the options selected) in this way. 

2.7 Conceptual Models 
In this section we describe the conceptual models used in CPM modelling.  Before describing the 
various models, it is necessary to consider what a conceptual model means.  For the purposes of this 
report we will use the definition put forward by Olsson et al. [Olsson et al., 1994].  According to these 
authors the ingredients that make up a conceptual model are: the processes modelled, the 
geometric framework, the parameters required by the model, the method of spatial assignment of 
the parameters and the boundary and initial conditions required by the model. 

ConnectFlow is a very flexible and powerful tool that can be used to model a wide range of flow and 
transport phenomena in porous media.  Any model of a system that is constructed using the CPM 
module will contain all of the elements of a conceptual model identified by Olsson et al. [Olsson et 
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al., 1994].  However, it is useful to present these ingredients of the conceptual model in two parts.  
This is because one of the powerful features of the ConnectFlow program is the way in which the full 
flexibility of the geometric framework and the method of spatial assignment of the parameters are 
available to all of the models of physical processes that are implemented.  This means, for example, 
that many different types of finite-element discretisation can be used to represent the different 
physical processes that can be modelled with ConnectFlow.  Thus, for example, if it were 
appropriate, different finite-element types could be used in the solution of the groundwater flow and 
the radionuclide transport equations for a particular system. 

In the remainder of this chapter, the geometric framework, the method of spatial assignment of the 
parameters, some general features of the boundary conditions, stochastic modelling and the 
representation of tabular features are described.  In Chapter 3 the physical processes that can be 
represented, the parameters that must be specified and the initial and boundary conditions required 
for each model available in the CPM module are presented.  The mathematical description of the 
processes is presented in terms of the governing equations.  The scientific basis for these 
conceptual models has been described in section 2.   

2.8 Geometric Framework 
The spatial region represented in a CPM model is discretised using the finite-element method.  The 
finite-element mesh used is specified either by importing a mesh from a file or defined explicitly by a 
patch grid.  A patch is a simple region bounded by points in one dimension, straight sides in two 
dimensions, or planar surfaces in three dimensions.  One-dimensional patches are lines, two-
dimensional patches may be triangles or quadrilaterals and three-dimensional patches may be 
triangular prisms, hexahedra or tetrahedra.  Patches of different dimensions can be mixed within a 
single model, for example to represent features such as boreholes by one-dimensional patches 
within a two- or three-dimensional model.  Patches are subdivided into elements and can have 
different numbers of elements in each direction.  The size of the elements within a patch may be 
constant, or may be assigned arbitrarily.  All elements within a single patch are of the same rock 
type, though this can be changed later in the model creation. 

The geometric parameters required to define a grid of patches are the co-ordinates of the corners of 
each patch, the topology of the patches, and the number of elements and their relative sizes within 
each patch.  The rock type of each patch must also be specified. 

Fault zones are also represented either explicitly by patches, with rock types specified in the same 
way as for ordinary patches, or implicitly by using the Implicit Fracture Zone (IFZ) method to modify 
the properties of finite-elements intersected by one or more fracture zones.  In the explicit case, the 
fault zones may be defined by specifying a fault line or plane and a fault width vector.  In the IFZ case 
3D fault zones are defined by a polygon of coplanar points together with a width and properties for 
the rock within the fracture zone.  Both facilities enable the position and thickness of a fault zone to 
be modified with the minimum of effort. 

If required, meshes comprising elements with curved sides in two dimensions, or curved faces in 
three dimensions can be generated.  The curved elements are derived from planar elements by use 
of a polynomial mapping function.  Grids comprising curved elements may be defined by specifying 
the co-ordinates of the corners of each element, its mapping function, and its rock type. 
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2.9 Spatial Assignment of Parameters 
Physical parameters of the geological regions in a CPM model can be specified as constants, or more 
usually as constants for a given rock type.  Stochastic modelling can be performed by defining 
permeability as a heterogeneous variable in terms of an exponential variogram with specified mean 
and standard deviation for each rock type.  In this case, and in the case where IFZ is used to model 
fracture zones, permeability and porosity are calculated for each finite-element and stored in a file.  
It is also possible for these parameters to be specified as arbitrary functions of space, and 
sometimes as functions of other parameters, or of variables such as pressure and temperature.  This 
is done through the use of user-supplied Fortran subroutines, which can be interfaced to the 
program at appropriate places. 

In summary, most of the parameters used to specify the properties of the rocks and the fluids 
represented in the CPM model can be specified in one or more of the following ways: 
• To have a constant value throughout the model; 
• To have a constant value for a particular rock unit and/or solute species; 
• To vary as a function of the variables, for example, the pressure, and certain pre-defined 

parameters, for example the fluid compressibility, according to relationships built into the CPM 
module; 

• To vary (subject to certain limitations) as a function of the standard parameters, the variables and 
user-defined parameters in an arbitrary manner specified by the user through a set of Fortran 
subroutines, which have standard, well-defined interfaces. 

2.10 Boundary Conditions 
The basic types of boundary conditions available for a CPM model consist of specified value and 
specified flux conditions for the variables.  The boundary conditions may be constant, or spatially 
varying.  Specified value conditions may be constant in time, or can be varying in time for transient 
calculations.  More complex boundary conditions that are non-linear, in that variables or fluxes 
depend on variables themselves are possible.  One example of such a boundary condition is the 
Recharge-Discharge condition that is a generalised flux condition with the magnitude and direction 
of flux depending on the difference between the height of the water table and the topographic 
height.  The default (i.e. if nothing is set explicitly) boundary condition for each variable is zero flux.  
Chapter 3 describes the types of boundary conditions that are available for each physical model in 
the CPM module.  In addition to the conditions described here, more generalised boundary 
conditions can be specified through user-supplied Fortran subroutines.  These allow the value of a 
variable or its flux to be specified as a function of position and the values of other variables at the 
boundary. 

2.11 Stochastic Modelling 
ConnectFlow has the capability to efficiently perform stochastic simulations for both linear systems 
(e.g. constant-density groundwater flow) and non-linear systems (e.g. coupled variable-density flow 
and salt transport).  For this purpose, the generation of stochastic permeability fields in CPM models 
has been implemented based on the Turning Bands method.  This method has been used and 
tested extensively in comparisons with HYDRASTAR [Morris et al., 1994] and on the WIPP2 test 
case [Cliffe et al., 1993].  The stochastic continuum approach requires that calculations be 
performed on tens or hundreds of Monte-Carlo realisations of essentially the same hydrogeological 
system.  Therefore, care has been taken to ensure that the stochastic continuum method is 
implemented efficiently. 

The methodology allows a good deal of flexibility in the stochastic modelling.  The rock mass and 
individual fracture zone domains can have independent statistical parameters, and the domains can 
be defined as stochastic or deterministic independently.  By treating the rock mass and fracture 
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zones as independent domains, this method contrasts to HYDRASTAR where the spatial process is 
continuous and ‘trends’ (scaling of the local conductivity) are used to represent the fracture zones.  
Currently, simulations are unconditioned.  Conditioning of the rock mass or fracture domains would 
be straightforward to implement numerically, but careful consideration needs to be given to how the 
data is defined.  For example, on what rock volume the data is defined and whether it is associated 
with a particular zone or just a borehole interval.  The stochastic methods for the rock mass are 
described in the remainder of this section.  The stochastic methods for the fracture zones are 
described in section 2.12. 

For the current release, unconditioned realisations of the rock mass are based on an exponential 
variogram, and can be combined with deterministic fracture zone properties using IFZ (see 
section 2.12).  It may be desired to have different statistical parameters in different parts of the 
model.  For example, a median permeability that decreases with depth.  Another important 
possibility is to have different statistics for the regional- and site-scale domains, since different 
values will be obtained for upscaling to the different mesh sizes.  Generally, the larger the grid size, 
the higher the median and the smaller the variance until a REV is reached.  These requirements are 
met by having a continuous spatial process in terms of the underlying variogram, but such that the 
mean and standard deviation can vary spatially by rock type.  This approach is therefore appropriate 
for models whose statistical properties are generally associated with trends rather than absolute 
discontinuities at lithological boundaries. 

The approach is to use a single Gaussian spatial process with a uniform correlation length, and 
normalised to have zero mean and variance 1.0.  This generated normalised field is then rescaled by 
the mean and variance parameters for the discrete parts of the model.  Thus, different upscaled 
mean and variance parameters can be applied to an embedded regional- and site-scale model, but 
in a way such that a high permeability in the regional-scale would generally be adjacent to a high 
permeability in the site-scale near the interface.  This avoids having artificial barriers to flow around 
the boundary of the site-scale model due to discontinuities in the spatial process. 

The CPM module also allows anisotropic permeabilities to be defined.  For the stochastic case, this is 
implemented by scaling the normalised spatial process by different factors for the different 
components of the permeability tensor.  Different degrees of anisotropy can be defined for different 
domains. 

2.12 Implicit representation of Tabular Features (Fracture Zones) using IFZ 
A method for calculating the effective permeability of a grid block in a model for groundwater flow in 
a domain containing tabular features has been implemented in the CPM module.  The method is 
based on the IFZ approach [Boghammar et al., 1997], but represents a significant enhancement in 
the range of structures it can represent, how it handles fracture intersections, and its efficiency.  The 
permeability of the background rock and the features may have arbitrary orientation, and the 
features may be more or less permeable than the surrounding rock.  The approach is simple to 
implement and has low computational cost. 

There are various approaches to modelling groundwater flow in domains containing tabular features.  
If the features are much more permeable, or more transmissive, than the background rock, the 
modelling can be undertaken using discrete fracture-network models, as described in the Discrete 
Fracture Network sections of this document, in which each feature is represented by a planar 
‘fracture’, and the background rock is not represented.  Such models are easy to set up, and it is 
easy to change the numbers, positions and properties of the features.  However, the features may 
not be that much more permeable or more transmissive than the background rock, or some features 
may act as barriers to flow across them, or some features may have a more complicated behaviour in 



ConnectFlow Technical Summary 

© Amentum. All rights reserved. 21 
 

that they act as barriers to flow across them, but in the directions along their larger extents are more 
transmissive than the surrounding rock.  It may, therefore, be necessary to model the flow through 
the background rock as well as through the features.  This can be done using fracture-network 
models, but it may be necessary to approximate the background rock in some way in terms of 
‘fractures’. 

Another approach to the modelling is to use continuum porous medium models in which each 
tabular feature is represented by a group of finite elements chosen so that the boundaries of the 
feature lie along element boundaries.  There are variants of this approach in which, for example, the 
features are approximated using two-dimensional elements in a grid of three-dimensional elements.  
All of these approaches represent the flow in both the features and the surrounding rock, and can 
handle the various types of features discussed above. 

However, it is very difficult and time-consuming to set up the grids for such a model in three 
dimensions, and in general it is very difficult to automate the process of setting up the grid.  This is 
particularly important if one wants to address the uncertainties, which will always exist, in the 
number and position of the features.  This would be done by undertaking Monte-Carlo simulations.  
Realisations of the features would be generated numerically based on the available information 
about the features and then the flow would be calculated for each realisation.  In this way, the 
uncertainty about the flow resulting from the uncertainties about the features could be quantified.  
However, if it were necessary to manually set up the grid for the numerical flow calculation for each 
realisation, it would only be practicable to undertake calculations for a very small number of 
realisations, which would limit the usefulness of the Monte-Carlo technique. 

An alternative approach to modelling flow in a domain containing tabular features using continuum 
porous medium models is as follows.  The finite-element grid is set up independently of the features.  
Typically, a simple cubic grid might be used.  Then for each element, or grid block, a suitable 
effective permeability would be determined, appropriate to represent the background rock and all 
the features crossing the element, or grid block.  This approach is often used in finite-difference 
calculations, because many finite-difference programs can only handle simple cubic grids.  Variants 
of this approach have been proposed by, for example, Svensson [Svensson, 1999] and 
Lee et al. [Lee et al., 2000].  In fact, the approach is better suited to implementation in finite-element 
models as they allow an arbitrary direction of hydraulic anisotropy in the effective permeability to be 
specified.  This is important since, in the general case, the principal directions of the permeability 
tensor will differ from element to element according to the alignment of features that cross them.  
Another motivation for using simple cubic grids is in undertaking stochastic calculations to address 
the effects of heterogeneity in the background rock, because the statistical parameterisation may 
require that all elements or grid blocks have similar sizes. 

The approach is particularly flexible.  It can be readily automated, which makes it straightforward to 
undertake Monte-Carlo simulations to address the uncertainties in the number and position of the 
features.  However, for a particular level of grid refinement, the flow calculated for an individual 
realisation would not be quite as accurate as that calculated using a grid chosen so that each feature 
is represented accurately by a number of finite elements, although this can be addressed by grid 
refinement. 

An example of the application of the implementation of this method is shown in Figure 2-1. 
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Figure 2-1: Application of CPM IFZ method for representing equivalent permeability of regional-scale fracture zones in a deterministic 
model. Top: Finite-element grid with fracture zones structures superimposed. Fracture zones that are coloured red have a higher 
transmissivity than those coloured blue. Bottom: equivalent permeability in each finite-element with fracture zones superimposed. 
Elements are coloured according to the logarithm of permeability from red (high) to low (blue). 
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3 Physical processes that can be modelled in Continuous Porous Medium models 
The following subsections describe the physical processes, the parameters required, and the initial 
and boundary conditions for the various equations solved for each CPM model available. Also, the 
flux term for each equation used is given.  This flux is the quantity that is specified by imposing a 
specified-flux type of boundary condition. 

3.1 Groundwater flow 

3.1.1 Physical Processes 
Groundwater flow in a porous medium is modelled in terms of Darcy’s law (Equation 2-1),  

𝒒 = −
𝑘

𝜇
(∇𝑃𝑅 − (𝜌𝑙 − 𝜌0)𝒈) 

Equation 3-1 

and the equation of continuity, 

𝜕

𝜕𝑡
(𝜙𝜌𝑙) − ∇ ∙ (𝜌𝑙𝒒) = 0 

Equation 3-2 

These are combined to form a single second-order equation for the residual pressure, 

𝜕

𝜕𝑡
(𝜙𝜌𝑙) − ∇ ∙ (𝜌𝑙

𝑘

𝜇
(∇𝑃𝑅 − (𝜌𝑙 − 𝜌0)𝒈) = 0 

Equation 3-3 

and the flux for this pressure equation is 

𝐹𝑃 = 𝜌𝑙𝒒 ∙ 𝒏 Equation 3-4 
The residual pressure, PR, is related to the total pressure, PT, by the expression 

𝑃𝑅 = 𝑃𝑇 + 𝜌0𝑔(𝑧 − 𝑧0) Equation 3-5 
The hydraulic head, h, is related to the residual pressure by 

ℎ =
𝑃𝑅

𝜌0𝑔
 

Equation 3-6 

3.1.2 Parameters Required 
The parameters required are as follows: 

Parameter Symbol/definition Comments 

Permeability k A symmetric tensor.  Can be constant, or constant 
for a given rock type, or can be an arbitrary 

function of position, and can be anisotropic. 

Porosity 
𝜙 = 𝜙0 + (𝑃

𝑇 − 𝑃0
𝑇)
𝑑𝜙

𝑑𝑃𝑇
 

𝑃0
𝑇  is a constant. 

0 and d/dPT can be constant, or constant for a 
given rock type, or can be arbitrary functions of 

position and pressure. 

Fluid density 𝜌𝑙 = 𝜌0 (1 + 𝛼(𝑃
𝑇 − 𝑃0

𝑇))  and 𝑃0𝑇 are constants. 

Fluid viscosity  A constant. 
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3.1.3 Initial and Boundary Conditions 
The following initial conditions are required: 
• Prescribed pressure. 

The following boundary conditions can be specified: 
• Prescribed pressure; 
• Prescribed flux of fluid; 
• Non-linear recharge-discharge (see below); 
• Hydrostatic for vertical sides (see below); 
• Point sinks for abstraction/injection at boreholes. 

For the non-linear recharge-discharge condition the discharge of groundwater varies in magnitude 
and sign as the difference between the watertable, head, and the topographic height, z, such that 

𝐹𝑃 = {

𝜌𝑙𝐼(ℎ − 𝑧)

𝐿
, ℎ > 𝑧 − 𝐿

−𝜌𝑙𝐼, ℎ ≤ 𝑧 − 𝐿
 

Equation 3-7 

for a maximum potential infiltration I.  The arbitrary transition thickness, L, is usually set to the soil 
thickness. 

The hydrostatic boundary condition is zero vertical flow: 

𝑞𝑧 = 0 Equation 3-8 

3.1.4 2D Areal Groundwater Flow 
It is also possible to model flow in a 2D areal model of an aquifer overlain by a confining layer using a 
vertically integrated form of Equation 3-2.  The resulting equation is 

∇ ∙ (𝑏𝜌𝑙𝒒) = 𝑄 Equation 3-9 
Here, the effective thickness of the aquifer, b, is given by 

𝑏 =

{
 
 

 
 𝑧𝑡 − 𝑧𝑏 ,

𝑃𝑅

𝜌𝑙𝑔
≥ 𝑧𝑡 (confined aquifer)

𝑃𝑅

𝜌𝑙𝑔
− 𝑧𝑏 ,

𝑃𝑅

𝜌𝑙𝑔
< 𝑧𝑡 (unconfined aquifer)

 

Equation 3-10 

The source term, Q, accounts for infiltration when modelling an unconfined aquifer.  When modelling 
a confined aquifer, Q accounts for leakage and is given by 

𝑄 =
𝜌𝑙𝑘𝑣
𝜇

(
𝜌𝑙𝑔𝑧𝑠 − 𝑃

𝑅

𝑧𝑠 − 𝑧𝑡
) 

Equation 3-11 

3.2 Groundwater Flow and Heat Transport 

3.2.1 Physical Processes 
The CPM module can calculate the non-linear flow due to coupled groundwater flow and heat 
transport, where the fluid density is dependent upon the temperature.  This is modelled using 
Darcy's law, Equation 3-1, the continuity equation, Equation 3-2, and the heat transport 
equation [Bear, 1972], 

(𝜌𝑐)𝑎
𝜕𝑇

𝜕𝑡
+ 𝜌𝑙𝑐𝑙𝒒 ∙ ∇𝑇 − Γ𝑎∇

2𝑇 = 𝐻 
Equation 3-12 

The first two of these equations are combined to form a single second-order equation for the residual 
pressure, Equation 3-3. 
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The fluxes for the pressure and temperature equations are Equation 3-4 and 

𝐹𝑇 = −Γ𝑎∇𝑇 ∙ 𝑛 Equation 3-13 

3.2.2 Parameters Required 
The parameters required are as follows: 

Parameter Symbol/definition Comments 

Permeability k A symmetric tensor.  Can be constant, or constant 
for a given rock type, or can be an arbitrary 

function of position, and can be anisotropic. 

Porosity 
𝜙 = 𝜙0 + (𝑃

𝑇 − 𝑃0
𝑇)
𝑑𝜙

𝑑𝑃𝑇
 

𝑃0
𝑇  is a constant. 

0 and d/dPT can be constant, or constant for a 
given rock type, or can be arbitrary functions of 

position, pressure and temperature. 

Fluid density 𝜌𝑙 = 𝜌0(1 + 𝛼(𝑃
𝑇 − 𝑃0

𝑇) 

   −𝛽(𝑇 − 𝑇0)) 
, , 𝑃0𝑇 and T0 are constants. 

Fluid viscosity 𝜇 = 𝜇0𝑒
−𝛿1(𝑇−𝑇0) T0, 0 and 1 are constants. 

Average 
thermal 

conductivity 
of the rock 
and fluid 

𝛤𝑎 = 𝜑𝛤𝑙 + (1 − 𝜑)𝛤𝑠 Approximated by the thermal conductivity of the 
rock, s.  Can be constant, or constant for a given 

rock type. 

Average heat 
capacity of 

the rock and 
fluid 

(𝜌𝑐)𝑎 = 𝜑𝜌𝑙𝑐𝑙 + (1
− 𝜑)𝜌𝑠𝑐𝑠 

Approximated by the heat capacity of the rock, 
scs. 

cl is a constant. 

s can be constant, or constant for a given rock 
type. 

cs can be constant, or constant for a given rock 
type. 
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3.2.3 Initial and Boundary Conditions 
The following initial conditions are required: 
• Prescribed pressure; 
• Prescribed temperature. 

The following boundary conditions can be specified: 
• Prescribed pressure; 
• Prescribed flux of fluid; 
• Hydrostatic for vertical sides (see section 3.1); 
• Point sinks for abstraction/injection at boreholes; 
• Prescribed temperature; 
• Prescribed heat flux. 

3.3 Unsaturated Groundwater Flow 

3.3.1 Physical Processes 
This is modelled in terms of a modified version of Darcy's law (see section 2.2), 

𝒒 = −
𝑘𝑟𝒌

𝜇
(∇𝑃𝑅 − (𝜌𝑙 − 𝜌0)𝒈) 

Equation 3-14 

and the equation of continuity, 

𝜕

𝜕𝑡
(𝜙𝑆𝜌𝑙) − ∇ ∙ (𝜌𝑙𝒒) = 0 

Equation 3-15 

These are combined to form a single second-order equation for the residual pressure, 

𝜕

𝜕𝑡
(𝜙𝑆𝜌𝑙) − ∇ ∙ (𝜌𝑙

𝑘𝑟𝒌

𝜇
(∇𝑃𝑅 − (𝜌𝑙 − 𝜌0)𝒈) = 0 

Equation 3-16 

and the flux for this pressure equation is given by Equation 3-4. 

3.3.2 Parameters Required 
The parameters required are as follows: 

Parameter Symbol/definition Comments 

Permeability k A symmetric tensor.  Can be constant, or constant 
for a given rock type, or can be an arbitrary 

function of position, and can be anisotropic. 

Relative 
permeability 

kr An arbitrary function of saturation, which is related 
to the total pressure through a specified capillary 

pressure curve (see below). 

Porosity 
𝜙 = 𝜙0 + (𝑃

𝑇 − 𝑃0
𝑇)
𝑑𝜙

𝑑𝑃𝑇
 

𝑃0
𝑇  is a constant. 

0 and d/dPT can be constant, or constant for a 
given rock type, or can be arbitrary functions of 

position and pressure. 

Fluid density 𝜌𝑙 = 𝜌0 (1 + 𝛼(𝑃
𝑇 − 𝑃0

𝑇))  and 𝑃0𝑇 are constants. 

Fluid viscosity  A constant. 
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In the CPM module, the way in which the permeability varies with the saturation, S, is specified using 
various empirical models for the relative permeability, kr, and saturation, S. 

The Brooks and Corey model is 

𝑘𝑟 = (
𝑆 − 𝑆𝑟𝑒𝑠
1 − 𝑆𝑟𝑒𝑠

)
(2+3𝛾) 𝛾⁄

 
Equation 3-17 

 

𝑆 = 𝑆𝑟𝑒𝑠 + (1 − 𝑆𝑟𝑒𝑠) (
𝑃𝐸
−𝑃𝑇

)
𝛾

 
Equation 3-18 

The Van Genuchten model is 

𝑘𝑟 = √𝑆𝛼 [1 − (1 − 𝑆𝛼
𝛾 (𝛾−1)⁄ )

(𝛾−1) 𝛾⁄
]
2

 
Equation 3-19 

 

𝑆 = 𝑆𝑟𝑒𝑠 + (1 − 𝑆𝑟𝑒𝑠) (
1

1 + (−𝑃𝑇 𝑃𝐸⁄ )𝛾
)
(𝛾−1) 𝛾⁄

 
Equation 3-20 

where S  is given by 

𝑆𝛼 =
𝑆 − 𝑆𝑟𝑒𝑠
1 − 𝑆𝑟𝑒𝑠

 
Equation 3-21 

The Extended Van Genuchten model is 

𝑘𝑟 = 𝑆𝛼
𝛽 Equation 3-22 

 

𝑆 = 𝑆𝑟𝑒𝑠 + (1 − 𝑆𝑟𝑒𝑠) (
1

1 + (−𝑃𝑇 𝑃𝐸⁄ )𝛾
)
(𝛾−1) 𝛾⁄

(1 −
𝑆

𝑃𝐷
)
𝛾1

 
Equation 3-23 

where S  is defined as in Equation 3-21. 

The CPM module default model for kr is 

𝑘𝑟 = {

𝐴𝐾𝑅
𝐵𝐾𝑅 + (−𝑃

𝑇)𝑆𝐾𝑅
, 𝑃𝑇 < 0

1, 𝑃𝑇 ≥ 0

 
Equation 3-24 

S is calculated from the capillary pressure curve.  The default form used is 

𝑘𝑟 = {

𝐴𝑃𝐶
𝐵𝑃𝐶 + (−𝑃

𝑇)𝑆𝑃𝐶
, 𝑃𝑇 < 0

1, 𝑃𝑇 ≥ 0

 
Equation 3-25 

AKR, BKR, SKR, APC, BPC and SPC are constant for a given rock type. 

3.3.3 Initial and Boundary Conditions 
The following initial conditions are required: 
• Prescribed pressure. 

The following boundary conditions can be specified: 
• Prescribed pressure; 
• Prescribed flux of fluid; 
• Non-linear recharge-discharge (see section 3.1); 
• Hydrostatic for vertical sides (see section 3.1); 
• Point sinks for abstraction/injection at boreholes. 
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3.4 Unsaturated Groundwater Flow and Heat Transport 

3.4.1 Physical Processes 
This is modelled using a modified version of Darcy's law, Equation 3-14, the equation of continuity, 
Equation 3-15 and the heat transport equation, Equation 3-12. 

The first two of these equations are combined to form a single second-order equation for the residual 
pressure, Equation 3-16. 

The fluxes for the pressure and temperature equations are given in Equation 3-4 and Equation 3-13. 

3.4.2 Parameters Required 
The parameters required are as follows: 

Parameter Symbol/definition Comments 

Permeability k A symmetric tensor.  Can be constant, or constant 
for a given rock type, or can be an arbitrary 

function of position, and can be anisotropic. 

Relative 
permeability 

kr An arbitrary function of saturation, which is related 
to the total pressure through a specified capillary 

pressure curve (see section 3.3). 

Porosity 
𝜙 = 𝜙0 + (𝑃

𝑇 − 𝑃0
𝑇)
𝑑𝜙

𝑑𝑃𝑇
 

𝑃0
𝑇  is a constant. 

0 and d/dPT can be constant, or constant for a 
given rock type, or can be arbitrary functions of 

position, pressure and temperature. 

Fluid density 𝜌𝑙 = 𝜌0(1 + 𝛼(𝑃
𝑇 − 𝑃0

𝑇) 

   −𝛽(𝑇 − 𝑇0)) 
, , 𝑃0𝑇 and T0 are constants. 

Fluid viscosity 𝜇 = 𝜇0𝑒
−𝛿1(𝑇−𝑇0) T0, 0 and 1 are constants. 

Average 
thermal 

conductivity 
of the rock 
and fluid 

𝛤𝑎 = 𝜑𝛤𝑙 + (1 − 𝜑)𝛤𝑠 Approximated by the thermal conductivity of the 
rock, s.  Can be constant, or constant for a given 

rock type. 

Average heat 
capacity of 

the rock and 
fluid 

(𝜌𝑐)𝑎 = 𝜑𝜌𝑙𝑐𝑙 + (1
− 𝜑)𝜌𝑠𝑐𝑠 

Approximated by the heat capacity of the rock, 
scs. 

cl is a constant. 

s can be constant, or constant for a given rock 
type. 

cs can be constant, or constant for a given rock 
type. 
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3.4.3 Initial and Boundary Conditions 
The following initial conditions are required: 
• Prescribed pressure; 
• Prescribed temperature. 

The following boundary conditions can be specified: 
• Prescribed pressure; 
• Prescribed flux of fluid; 
• Hydrostatic for vertical sides (see section 3.1); 
• Point sinks for abstraction/injection at boreholes; 
• Prescribed temperature; 
• Prescribed heat flux. 

3.5 Radionuclide Transport 

3.5.1 Physical Processes 
This is modelled using the following equation [Bear, 1972 and 1979; Freeze et al., 1979; De Marsily, 
1985], 

𝜕

𝜕𝑡
(𝜑𝑅𝛼𝑁𝛼) + 𝒒 ∙ 𝛻𝑁𝛼 − 𝛻 ∙ (𝜑𝑫𝛼𝛻𝑁𝛼) = −𝜆𝛼𝜑𝑅𝛼𝑁𝛼 + 𝜆𝛼−1𝜑𝑅𝛼−1𝑁𝛼−1 + 𝜑𝑓𝛼 

Equation 3-26 

Here, the subscript –1 is used to indicate the parent nuclide of nuclide . 

Normally, since the groundwater flow is not coupled to the radionuclide transport, q will be 
calculated from an initial groundwater flow calculation. 

The flux for the nuclide equation is 

𝐹𝑁𝛼 = (𝒒𝑁𝛼 − 𝜙𝑫𝛼∇𝑁𝛼) ∙ 𝒏 Equation 3-27 
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3.5.2 Parameters Required 
The parameters required are as follows:  

Parameter Symbol/definition Comments 

Porosity 
𝜙 = 𝜙0 + (𝑃

𝑇 − 𝑃0
𝑇)
𝑑𝜙

𝑑𝑃𝑇
 

𝑃0
𝑇  is a constant. 

0 and d/dPT can be constant, or constant for a 
given rock type, or can be arbitrary functions of 

position and pressure. 

Darcy velocity q Obtained from a previous ConnectFlow 
calculation. 

Retardation 
factors for 

each nuclide 

𝑅𝛼 = 1 +
(1 − 𝜑)

𝜑
𝐾𝑑,𝛼 Kd, is constant for a given rock type and nuclide. 

(Note The CPM module’s definition of Kd differs 
from the literature definition: i.e. CPM module Kd = 

rock density multiplied by literature Kd ) 

Decay 
constants for 
each nuclide 

 A constant for each nuclide. 

Dispersion 
tensor for 

each nuclide 

𝑫𝛼 =
𝐷𝑚𝛼
𝜏
𝛿𝑖𝑗 + 𝛼𝑇𝛼𝑣𝛿𝑖𝑗  

  +(𝛼𝐿𝛼 − 𝛼𝑇𝛼)
𝑣𝑖𝑣𝑗

𝑣
 

Dm is constant for each nuclide. 

 is constant for a given rock type. 

L and T are constant for a given rock type. 

vi are the components of the porewater velocity, 
which is given by v = q/. 

Source term 
for each 
nuclide 

f A function of position and time. 

3.5.3 Initial and Boundary Conditions 
The following initial conditions are required: 
• Prescribed concentration of each nuclide. 

The following boundary conditions can be specified: 
• Prescribed concentration of each nuclide; 
• Prescribed flux of each nuclide; 
• Zero dispersive flux for each nuclide (see below). 

The zero dispersive flux condition is basically an outflow condition 

𝐹𝑁𝛼 = 𝑁𝛼𝒒 ∙ 𝒏 Equation 3-28 
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This condition is realistic for surfaces where flow is known to be discharging from the model.  Where 
there is a mixture of recharge and discharge then the boundary condition can be generalised to 

𝐹𝑁𝛼 = {

(𝑁𝛼 − 𝑁𝛼0)𝒒 ∙ 𝒏

𝜀
, 𝒒 ∙ 𝒏 ≤ 0

𝑁𝛼𝒒 ∙ 𝒏, 𝒒 ∙ 𝒏 > 0

 
Equation 3-29 

This is effectively a mixed boundary condition such that N = N0 at inflows and an outflow 
condition is applied elsewhere. 

3.6 Radionuclide Transport in Unsaturated Flow 

3.6.1 Physical Processes 
This is modelled using the following equation [Bear, 1972 and 1979; Freeze et al., 1979; De Marsily, 
1985], 

𝜕

𝜕𝑡
(𝜑𝑆𝑅𝛼𝑁𝛼) + 𝒒. 𝛻𝑁𝛼 − 𝛻 ∙ (𝜑𝑆𝑫𝛼𝛻𝑁𝛼)

= −𝜆𝛼𝜑𝑆𝑅𝛼𝑁𝛼 + 𝜆𝛼−1𝜑𝑆𝑅𝛼−1𝑁𝛼−1 +𝜑𝑆𝑓𝛼 

Equation 3-30 

Here, the subscript –1 is used to indicate the parent nuclide of nuclide . 

Normally, since the groundwater flow is not coupled to the radionuclide transport, q will be 
calculated from an initial unsaturated groundwater flow calculation. 

The flux for the nuclide equation is 

𝐹𝑁𝛼 = (𝒒𝑁𝛼 − 𝜙𝑆𝑫𝛼∇𝑁𝛼) ∙ 𝒏 Equation 3-31 
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3.6.2 Parameters Required 
The parameters required are as follows: 

Parameter Symbol/definition Comments 

Porosity 
𝜙 = 𝜙0 + (𝑃

𝑇 − 𝑃0
𝑇)
𝑑𝜙

𝑑𝑃𝑇
 

𝑃0
𝑇  is a constant. 

0 and d/dPT can be constant, or constant for a 
given rock type, or can be arbitrary functions of 

position and pressure. 

Darcy velocity q Obtained from a previous ConnectFlow 
calculation. 

Retardation 
factors for 

each nuclide 

𝑅𝛼 = 𝑆 +
(1 − 𝜑)

𝜑
𝐾𝑑,𝛼 Kd, is constant for a given rock type and nuclide. 

(Note The CPM module’s definition of Kd differs 
from the literature definition: i.e. CPM module Kd = 

rock density multiplied by literature Kd ) 

Decay 
constants for 
each nuclide 

 A constant for each nuclide. 

Dispersion 
tensor for 

each nuclide 

𝑫𝛼 =
𝐷𝑚𝛼
𝜏
𝛿𝑖𝑗 + 𝛼𝑇𝛼𝑣𝛿𝑖𝑗  

  +(𝛼𝐿𝛼 − 𝛼𝑇𝛼)
𝑣𝑖𝑣𝑗

𝑣
 

Dm is constant for each nuclide. 

 is constant for a given rock type. 

L and T are constant for a given rock type. 

vi are the components of the porewater velocity, 
which is given by v = q/. 

Source term 
for each 
nuclide 

f A function of position and time. 

3.6.3 Initial and Boundary Conditions 
The following initial conditions are required: 
• Prescribed concentration of each nuclide. 

The following boundary conditions can be specified: 
• Prescribed concentration of each nuclide; 
• Prescribed flux of each nuclide; 
• Zero dispersive flux for each nuclide (see section 3.5). 
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3.7 Coupled Groundwater Flow and Solute Transport 

3.7.1 Physical Processes 
The CPM module can calculate the non-linear flow due to coupled groundwater flow and solute 
transport, where the fluid density is strongly dependent upon the concentration of the solute.  This is 
modelled using Darcy's law, Equation 3-1, the continuity equation, Equation 3-2, and the advection-
dispersion equation, 

𝜕

𝜕𝑡
(𝜙𝜌𝑙𝑐) + ∇ ∙ (𝜌𝑙𝒒𝑐) = ∇ ∙ (𝜙𝜌𝑙𝑫∇𝑐) 

Equation 3-32 

The first two of these equations are combined to form a single second-order equation for the residual 
pressure, Equation 3-3. 

The fluxes for the pressure and concentration equations are Equation 3-4 and 

𝐹𝐶 = (𝜌𝑙𝒒𝑐 − 𝜙𝜌𝑙𝑫∇𝑐) ∙ 𝒏 Equation 3-33 

3.7.2 Parameters Required 
The parameters required in this case are as follows: 

Parameter Symbol/definition Comments 

Permeability k A symmetric tensor.  Can be constant, or constant 
for a given rock type, or can be an arbitrary 

function of position, and can be anisotropic. 

Porosity 
𝜙 = 𝜙0 + (𝑃

𝑇 − 𝑃0
𝑇)
𝑑𝜙

𝑑𝑃𝑇
 

𝑃0
𝑇  is a constant. 

0 and d/dPT can be constant, or constant for a 
given rock type, or can be arbitrary functions of 

position and pressure. 

Dispersion 
tensor 𝑫 =

𝐷𝑚
𝜏
𝛿𝑖𝑗 + 𝛼𝑇𝑣𝛿𝑖𝑗  

  +(𝛼𝐿 − 𝛼𝑇)
𝑣𝑖𝑣𝑗

𝑣
 

Dm is constant. 

 is constant for a given rock type. 

L and T  are constant for a given rock type. 

vi are the components of the porewater velocity, 
which is given by v = q/. 

Fluid density l (defined below) , c, 0, c0, and TP0  are constants. 

Fluid viscosity  A constant. 

The fluid density in the above table is given by 

1

𝜌𝑙
=

1 − 𝑐

𝜌0(1 + 𝛼(𝑃
𝑇 − 𝑃𝑇0))

+
𝑐

𝜌𝑐0(1 + 𝛼𝑐(𝑃
𝑇 − 𝑃𝑇0))

 
Equation 3-34 
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3.7.3 Initial and Boundary Conditions 
The following initial conditions are required: 
• Prescribed pressure; 
• Prescribed concentration of solute. 

The following boundary conditions can be specified: 
• Prescribed pressure; 
• Prescribed flux of fluid; 
• Non-linear recharge-discharge (see section 3.1); 
• Hydrostatic for vertical sides (see section 3.1); 
• Point sinks for abstraction/injection at boreholes; 
• Prescribed concentration of solute; 
• Prescribed flux of solute; 
• Zero dispersive flux for solute (see below). 

The zero dispersive flux condition is basically an outflow condition 

𝐹𝐶 = 𝜌𝑙𝑐𝒒 ∙ 𝒏 Equation 3-35 
This condition is realistic for surfaces where flow is known to be discharging from the model.  Where 
there is a mixture of recharge and discharge then the boundary condition can be generalised to 

𝐹𝑁𝛼 = {

𝜌
𝑙
(𝑐 − 𝑐0)𝒒 ∙ 𝒏

𝜀
, 𝒒 ∙ 𝒏 ≤ 0

𝜌
𝑙
𝑐𝒒 ∙ 𝒏, 𝒒 ∙ 𝒏 > 0

 

Equation 3-36 

This is effectively a mixed boundary condition such that c = c0 at inflows and an outflow condition is 
applied elsewhere. 

3.8 Coupled Groundwater Flow, Solute Transport and Heat Transport 

3.8.1 Physical Processes 
The CPM module can calculate the non-linear flow due to coupled groundwater flow, solute 
transport and heat transport, where the fluid density is strongly dependent upon the concentration 
of the solute and upon the temperature.  This is modelled using Darcy's law, Equation 3-1, the 
continuity equation, Equation 3-2, the advection-dispersion equation, Equation 3-33 and the heat 
transport equation [Bear, 1972], 

(𝜌𝑐)𝑎
𝜕𝑇

𝜕𝑡
+ 𝜌𝑙𝑐𝑙𝒒 ∙ ∇𝑇 − ∇ ∙ (𝑫

′∇𝑇) = 𝐻 
Equation 3-37 

Note that this equation reduces to Equation 3-12 if the dispersion tensor is a constant diagonal 
tensor with thermal conductivity Γ𝛼. 

The first two of these equations are combined to form a single second-order equation for the residual 
pressure, Equation 3-3. 

The fluxes for the pressure, concentration and temperature equations are Equation 3-4, Equation 
3-33 and  

𝐹𝑇 = −𝑫
′∇𝑇 ∙ 𝒏 Equation 3-38 
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3.8.2 Parameters Required 
The parameters required in this case are as follows: 

Parameter Symbol/definition Comments 

Permeability k A symmetric tensor.  Can be constant, or constant 
for a given rock type, or can be an arbitrary 

function of position, and can be anisotropic. 

Porosity 
𝜙 = 𝜙0 + (𝑃

𝑇 − 𝑃0
𝑇)
𝑑𝜙

𝑑𝑃𝑇
 

𝑃0
𝑇  is a constant. 

0 and d/dPT can be constant, or constant for a 
given rock type, or can be arbitrary functions of 

position, pressure and temperature. 

Dispersion 
tensor 𝑫 =

𝐷𝑚
𝜏
𝛿𝑖𝑗 + 𝛼𝑇𝑣𝛿𝑖𝑗  

  +(𝛼𝐿 − 𝛼𝑇)
𝑣𝑖𝑣𝑗

𝑣
 

Dm is constant. 

 is constant for a given rock type. 

L and T  are constant for a given rock type. 

vi are the components of the porewater velocity, 
which is given by v = q/. 

Fluid density l (defined below) , c, , c, 0, c0, TP0 , and T0 are constants. 

Fluid viscosity 𝜇 = 𝜇0𝑒
−𝛿1(𝑇−𝑇0) T0, 0 and 1 are constants. 

Heat 
dispersion 

tensor 

𝑫′ = 𝛤𝑎𝛿𝑖𝑗 + 𝜑𝜌𝑙𝑐𝑙𝛼
′
𝑇𝑣𝛿𝑖𝑗  

   +𝜑𝜌𝑙𝑐𝑙(𝛼
′
𝐿 − 𝛼

′
𝑇)
𝑣𝑖𝑣𝑗

𝑣
 

𝛼′𝐿 and 𝛼 ′
𝑇 are constant for a given rock type. 

cl is a constant. 

vi are the components of the porewater velocity, 
which is given by v = q/. 

Average 
thermal 

conductivity 
of the rock 
and fluid 

Γa = ϕΓl + (1 − ϕ)Γs Approximated by the thermal conductivity of the 
rock, s.  Can be constant, or constant for a given 

rock type. 

Average heat 
capacity of 

the rock and 
fluid 

(𝜌𝑐)𝑎 = 𝜑𝜌𝑙𝑐𝑙 + (1
− 𝜑)𝜌𝑠𝑐𝑠 

Approximated by the heat capacity of the rock, 
scs. 

cl is a constant. 

s can be constant, or constant for a given rock 
type. 

cs can be constant, or constant for a given rock 
type. 
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The fluid density in the above table is given by: 

1

𝜌𝑙
=

1 − 𝑐

𝜌0(1 + 𝛼(𝑃
𝑇 − 𝑃𝑇0) + 𝛽(𝑇 − 𝑇0))

+
𝑐

𝜌𝑐0(1 + 𝛼𝑐(𝑃
𝑇 − 𝑃𝑇0) + 𝛽𝑐(𝑇 − 𝑇0))

 
Equation 3-39 

3.8.3 Initial and Boundary Conditions 
The following initial conditions are required: 
• Prescribed pressure; 
• Prescribed concentration of solute; 
• Prescribed temperature. 

The following boundary conditions can be specified: 
• Prescribed pressure; 
• Prescribed flux of fluid; 
• Hydrostatic for vertical sides (see section 3.1); 
• Point sinks for abstraction/injection at boreholes; 
• Prescribed concentration of solute; 
• Prescribed flux of solute; 
• Zero dispersive flux for solute (see section 3.7); 
• Prescribed temperature; 
• Prescribed heat flux. 
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4 Numerical methods used for Continuous Porous Medium models 

4.1 Spatial Discretisation 

4.1.1 Approach 
ConnectFlow uses the finite-element approach for spatial discretisation.  This is a powerful approach 
that is particularly suited to numerical modelling in domains that are complicated geometrically, 
such as domains that represent geological structures with several lithological units or many faults.  
The basic idea of the approach is that the domain is represented as the combination of ‘finite 
elements’ that have a simple geometric shape (such as triangles or quadrilaterals in 2D and 
tetrahedra, triangular prisms or cuboids in 3D).  These elements may also be distorted by simple 
mappings.  The possibility of using irregular shaped grids provides much more flexibility in 
accurately representing the subsurface flow capture area than is possible using the regular blocks of 
a simple finite-difference method.  In particular, triangular and tetrahedral elements allow 
unstructured meshes to be created. 

On each finite element, the quantities of interest, such as the residual pressure, are represented by 
simple polynomial functions that interpolate between the values at certain special points called 
nodes.  The possibility of using polynomials of higher order than linear enables numerical schemes 
that have a high order of accuracy to be easily developed. 

The CPM module has a library of many different finite elements, including: 
• Linear and quadratic triangles in 2D; 
• Bi-linear and bi-quadratic quadrilaterals in 2D; 
• Linear and quadratic tetrahedra in 3D; 
• Tri-linear and tri-quadratic prisms in 3D; and 
• Tri-linear and tri-quadratic cuboids in 3D. 

The library also includes variants of the so-called ‘mixed elements’ (see section 4.1.3).  This provides 
considerable flexibility in representing the domain. 

4.1.2 Grid Generation 
Various facilities have been implemented in ConnectFlow to try to make generation of grids of finite 
elements as simple as possible.  Grids can be created within ConnectFlow itself or imported from 
other software, such as a grid generator, via a formatted file.  The principal approach used for 
generating grids is based on the concept of ‘patches’, which can be subdivided into a number of 
finite elements.  A patch is a region of a simple shape bounded by straight lines, either a triangle or a 
quadrilateral in 2D and a (possibly distorted) triangular prism or a (possibly distorted) cuboid in 3D.  
It is specified by the positions of its corners.  In two dimensions, an extension of this approach has 
been developed using the concept of ‘polygons’, which are regions with many sides.  These are first 
subdivided into patches, which are then subdivided into elements. 

The use of patches, and polygons in particular, enables grids to be generated with a minimum of 
input data.  It also makes it very simple to change the refinement of a grid, because the user does 
not have to calculate the locations of all of the individual elements.  Figure 4-1, Figure 4-2 and 
Figure 4-3 illustrate some of the types of grid that can be generated using the standard grid 
generation facilities available within ConnectFlow.  Options are available for representing faults and 
engineered features, such as boreholes, tunnels and drifts, in the grid. 
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Figure 4-1 A simple 2D grid generated using polygons.  The finite elements are coloured according to the rock type. 

 

Figure 4-2 An example of part of a complex 2D grid generated using polygons.  The finite elements are coloured according to the rock type. 
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Figure 4-3 Slices through a 3D grid coloured according to rock type.  The individual elements are not shown in this picture. 

In ConnectFlow, each element is assigned to a rock unit.  This assignment associates certain 
physical properties, for example the permeability, with the element.  A rock unit is comprised of one 
or more finite elements. 

ConnectFlow also includes an option for the user to specify the finite-element grid through a user-
specified Fortran subroutine.  This can be used, for example, to import grids generated using other 
programs into ConnectFlow. 

4.1.3 Formulation of the Equations 
There are several approaches to the finite-element method, which all lead to similar equations.  In 
the CPM module, the Galerkin finite-element method [Ciarlet, 1978; Mitchell et al., 1977; 
Zienkiewicz, 1977] is used to carry out the spatial discretisation of the equations (see [Winters et al., 
1984] for a brief ConnectFlow-specific discussion).  The finite-element method starts from an 
integral form of the equations. 

The dependent variables in the problem are approximated by functions, which have a simple 
polynomial behaviour on each of the elements.  The discretised equations are a discrete form of the 
integral equations.  The final result is a set of coupled, possibly non-linear, algebraic equations for a 
steady-state problem, and a set of coupled, possibly non-linear, ordinary differential equations in 
time for a transient problem (see e.g. [Mitchell et al., 1977]).  Temporal discretisation of the 
equations in the CPM module is described in section 4.2.  The equations are solved using the 
methods described in section 4.3. 

Two formulations of the various groundwater flow equations have been implemented in the CPM 
module.  In the so-called standard formulation, the basic quantity that is represented using finite 
elements is the residual pressure.  This formulation is used with the standard elements (linear and 
quadratic triangles and bi-linear and bi-quadratic quadrilaterals in 2D, and linear and quadratic 
tetrahedra and tri-linear and tri-quadratic prisms and cuboids in 3D).  It is a widely used approach. 

In the so-called mixed-element formulation, both the residual pressure and the mass flux are 
represented using finite elements.  This approach is less widely used than the standard formulation.  
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It has a lower order of accuracy than the standard formulation using bi- or tri-quadratic elements.  
However, it has one particular advantage.  It ensures that the normal component of the mass-flux 
vector is continuous across any interface within the modelling region, as is the case for the 
underlying equations, whereas the standard formulation does not preserve this property.  This 
feature of the mixed-element formulation is particularly beneficial when the quantity of primary 
interest is the velocity field, for example when calculating pathlines or performing transport 
calculations.  In particular, it is sometimes the case that numerically calculated pathlines could 
become stuck in the flow field obtained using the standard formulation on relatively coarse grids. 

A remark must be made about the treatment of advection in CPM modelling.  Many authors 
recommend the use of upstream weighting, the finite-element equivalent of upwinding, which is 
often used for finite-difference discretisations of advection-diffusion equations.  Upwinding often 
removes the numerical instabilities associated with a straightforward application of the Galerkin 
method to the advective terms.  However, there is a price to be paid - upwinding introduces a 
numerical dispersion effect which amounts to dispersion with a dispersion length closely related to 
the mesh spacing.  This leads to the total amount of dispersion in the model being a function of the 
refinement, which may be undesirable.  Therefore, in ConnectFlow the amount of dispersion in the 
calculation is made explicit by using a consistent Galerkin approach for the advective terms [Gresho 
et al., 1981].   

If numerical instabilities appear, the user has two alternatives: either to refine the mesh in the 
regions of high gradients so that the instabilities disappear or are reduced to an acceptable level, or 
to increase the physical dispersion lengths to stabilise the calculation. 

4.1.4 Use of Constraints 
It is often necessary to consider a variety of scales in groundwater flow modelling.  For example, a 
large regional-scale model to understand boundary conditions affecting flow at depth, and a more 
detailed (or site-) scale around contaminant sources.  In ConnectFlow it is possible to nest meshes 
constructed from elements of different scales using constraints. 

An example of how meshes can be nested is illustrated in Figure 4-4.  Here a refined (35m element-
size) site-scale model is joined to a coarser (105m element-size) regional-scale model.  The model is 
3D, although only a plan view is shown.  Hence, at the interface between the two scales, one 
element in the regional-scale is adjacent to nine elements in the site-scale, and only every third node 
in the site-scale mesh is coincident with a node in the regional-scale, the other two nodes being 
‘pinch’ nodes. 

 
Figure 4-4 Part of a finite-element mesh showing the constraint boundary between a refined site-scale model and a coarse regional-scale 
model. 
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To ensure that the physics of groundwater flow is maintained at the interface between meshes, the 
finite-element equations for elements on the interface are modified using constraint equations. 

For pinch nodes in a site-scale element on the interface, the pressure is interpolated from the 
pressures at the nodes in the adjacent regional-scale element, to ensure continuity in the discrete 
system.  The numerical implementation of this constraint in ConnectFlow is 

𝑃𝑅𝑠,𝑖 =∑𝜓𝑟,𝑖𝑗𝑃
𝑅
𝑟,𝑗

𝑗

 Equation 4-1 

For a regional-scale element on the interface, the flux across the interface is balanced with the sum 
of the fluxes across the interface for the adjoining site-scale elements, to ensure conservation of 
mass.  The numerical representation of this constraint in ConnectFlow is included implicitly. 

Similar principles can be applied to more complex processes, such as salt transport. 

4.2 Temporal Discretisation 
In the CPM solution, the spatial discretisation is carried out using the Galerkin finite-element method 
(see section 4.1).  For time-dependent problems, the application of this method leads to a set of 
coupled, possibly non-linear, ordinary differential equations in time.  There are two basic methods 
available in ConnectFlow for integrating these ordinary differential equations: 
• The Crank-Nicholson method; 
• Gear’s method (see e.g. [Byrne et al., 1975]). 

The Crank-Nicholson method contains a parameter, , that controls the degree of implicitness of the 
method.  The scheme is implicit for all values of  except 0 (for which it is equivalent to the explicit 
forward Euler scheme), and first-order accurate for all values except 0.5 for which it is second order 
accurate.  For  = 1 (fully implicit), the method is a backward-difference scheme (backward Euler).  
Although this scheme is only first-order accurate, it has the merit of being very stable, and is 
recommended for use in many cases.  Indeed, it often may be unconditionally stable, allowing, in 
principle, the use of very large timesteps, although this may not give a very accurate description of 
the time evolution of the system.  It may be appropriate for problems with a single time scale such as 
radionuclide transport in advection dominated flows.  The explicit forward Euler scheme ( = 0) and 
the second-order accurate scheme ( = 0.5) are only conditionally stable; that is there are 
constraints on the size of the timesteps, which depend on the size of the finite elements.  If these 
constraints are exceeded, the numerical solution will diverge. 

Three variants of the Crank-Nicholson scheme are included in ConnectFlow: 
• A version with a fixed time step size; 
• A very fast fully implicit version for linear problems.  This is particularly suitable for contaminant 

transport calculations; 
• A version in which the timestep size is chosen automatically at each time step to ensure 

convergence.  This version is particularly recommended for calculations of coupled groundwater 
flow and transport of salinity (and possibly heat). 

Gear’s method is a variable-timestep variable-order scheme, based on a predictor-corrector 
algorithm.  At each time step, the size of the time step and the order of the difference scheme are 
selected to try to maximise the size of the time step subject to a specified accuracy criterion, the 
error in the step being estimated from the difference between the predictor and corrector.  The 
corrector schemes used are the backward difference schemes of order one to five, which are 
generally very stable.  The scheme is particularly appropriate for use on problems that are ‘stiff’; that 
is, in simple terms the behaviour of the system involves components with a wide range of time 
scales.  For example, Gear’s method may be a good scheme to use for modelling coupled 
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groundwater flow and transport of heat from a radioactive waste repository, which constitutes a 
decaying heat source. 

4.3 Solution Methods and Treatment of Non-Linearities 
In general, spatial and temporal discretisation of a problem gives rise to large, non-linear, coupled, 
algebraic systems of equations.  In ConnectFlow, non-linearities are treated using the Newton-
Raphson iterative method.  This is a powerful technique for solving non-linear equations and 
converges very rapidly (quadratically) provided the initial guess is sufficiently close to the solution of 
the equations.  Solution of a linear problem is equivalent to using the Newton-Raphson method with 
a single iteration. 

For non-linear transient problems, the solution at the previous timestep is often a sufficiently good 
initial guess, since one does not want the solution to change too much over a single time step for 
reasons of accuracy. 

For highly non-linear steady-state problems, it is not always easy to find a sufficiently good initial 
guess.  In such cases, parameter stepping may be effective.  Parameter stepping is a technique in 
which the solution of a hard non-linear problem is approached via a sequence of related problems, 
starting from a problem that is easy to solve.  At each step the parameters of the system are changed 
slightly and the solution at the previous step is used as the initial guess for the Newton-Raphson 
iterations.  Parameter stepping is a very powerful technique. 

The Newton-Raphson method requires a linear system of equations to be solved at each stage of the 
iterative procedure.  These linear systems are large and sparse and have a structure that is 
determined by the underlying finite-element discretisation.  In ConnectFlow, both direct and iterative 
methods are available for solving these systems.  The direct method is an efficient implementation of 
the Frontal Method [Duff et al., 1993; Hood, 1976; Irons, 1975] to solve linear systems.  The Frontal 
Method is a variant of Gaussian elimination that exploits the structure of the equations to solve the 
system using a relatively small amount of memory, without the need to assemble the full matrix for 
the system in memory.  Gaussian elimination has the advantage of being a very robust method.   

However, a direct method can be prohibitively slow for large 3D models, in which case an iterative 
method may be more appropriate.  Two implementations of the Preconditioned Conjugate Gradient 
(PCCG) are incorporated in ConnectFlow.  These are the Generalised Minimum Residual (GMRES) 
and Biconjugate Stabilised (BicStab) methods.  GMRES is suited to non-symmetric systems (e.g. 
coupled flow and salt transport) and is generally more robust, while BicStab requires less memory. 

4.4 Mass-Conserving Particle Tracking 
Early methods for calculating pathlines in a CPM model might lead to stuck particles and inaccurate 
pathlines. One cause of this is the lack of mass balance between elements when using the finite 
element method. In their paper, Cordes and Kinzelbach [Cordes et al., 1992] propose a method for 
achieving mass balance between cubic elements by sub-dividing them into tetrahedra and 
calculating a velocity for each tetrahedron such that mass balance is achieved. Once this is done, 
more robust pathlines can be calculated. 

The mass-conserving method divides a cubic finite element into eight sub cubes (or hexahedra in 
the case of a deformed finite element in the general case). These are then further subdivided into 
five sub-tetrahedra (Figure 4-5). Thus there are 40 sub-tetrahedra per element. Velocities are 
calculated for each sub-tetrahedra so that mass balance is achieved between elements. This has the 
effect of a better specified velocity vector field in a given element such that particles do not 
disappear. The velocity is constant within each tetrahedron. 
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To calculate the velocities in each tetrahedron, first consider a corner node on the element in Figure 
4-5.  Assume this node is surrounded by eight other tetrahedra, one from the element shown and 
seven more from other elements adjacent to the node. The first step is to calculate the fluxes in 
these 8 tetrahedra surrounding a node (see Figure 4-6). The tetrahedra form an octahedron and the 
fluxes through the 8 outer surfaces are assumed to be equal to the corresponding “nodal fluxes.”   

 
Figure 4-5: A finite element is divided into 8 sub-elements and then further sub-divided into 5 sub-tetrahedra. 

The nodal fluxes in finite element theory are conceptually the fluxes from an element, E, towards the 
nodes, I, on that element.  They are derived using Galerkin’s method (the reader is pointed to Cordes 
et al., 1992 for the derivation of a similar equation for square finite elements) and have the important 
property that they always sum to zero around a node with no sources or sinks.  The nodal flux 
towards node I on element E is given by: 

𝑄𝐼𝐸
𝑁 = −

1

2𝜇𝐸
∫ 𝑑𝑥
𝑉𝐸

𝛻𝜓𝐼𝐸(𝑥). (𝐾𝐸 . 𝛻𝑃
𝑅(𝑥)) 

Equation 4-2 

where KE is the permeability for element E,  is the fluid viscosity inside the element, PR is the 
residual pressure,  is the basis function associated with node I on element E (there are 8 basis 
functions, one for each node, which are defined such that the pressure inside the element is given by 
𝑃𝑅(𝑥) = ∑ 𝑃𝐼

𝑅𝜓𝐼𝐸𝐼 (𝑥) where the PI
R are the residual pressures at the nodes) and the integration is 

over the volume VE of element E.  The factor of -1/2 at the beginning is obtained from a simple 
example for which the solution is known.   
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Note that the pressure gradient can be rewritten in the form 𝛻𝑃𝑅(𝑥) = ∑ 𝑃𝐽
𝑅𝛻𝜓𝐽𝐸𝐽 (𝑥) which gives: 

𝑄𝐼𝐸
𝑁 = −

1

2𝜇𝐸
∫ 𝑑𝑥
𝑉𝐸

𝛻𝜓𝐼𝐸(𝑥). (𝐾𝐸 .∑𝑃𝐽𝛻𝜓𝐽𝐸
𝐽

(𝑥)) 
Equation 4-3 

This integral is evaluated using a Gaussian scheme.   

The other fluxes in the 8 tetrahedra are calculated using zero-vorticity constraints and mass balance 
constraints.  Once this is accomplished for each of the 8 nodes around an element, the fluxes are 
then calculated for the tetrahedra in the element not adjacent to a node.  This is also accomplished 
using zero-vorticity and mass balance constraints.  Once the fluxes have all been obtained, the flow 
velocity for each tetrahedron is calculated.   

 
Figure 4-6: The first step of the calculation is finding the fluxes in the eight tetrahedra surrounding each node (which form an octahedron).  
The fluxes through the 8 outer surfaces are calculated using Galerkin’s method, the others are solved using mass conservation & zero 
vorticity constraints. 

The flow velocities are then used to track particles across an element from a start point to an end 
point. Due to the constant velocity in each tetrahedron, this leads to piecewise pathlines.  However, 
the non-vorticity and mass-balance constraints used in the calculation of the velocity field mean the 
pathlines rarely get stuck, if at all (some pathlines occasionally still get stuck for numerical reasons). 

Mass-conserving pathlines are available in the following CPM models: 
• Fully saturated or unsaturated groundwater flow 
• Fixed or variable density models 
• Hexahedral CB08 or CB81 finite elements (which can be distorted ) 
• Models with or without nodal quadrature 
• Models with regular hexahedral meshes (this means no more than 8 elements per node) 
• Models with or without variable mesh refinement (constraint boundaries) 

A mass-conserving method is available in the DFN module (see section 6.12.2). This has been 
coupled to the mass-conserving pathline capability in the CPM module to provide mass-conserving 
particle tracking for combined DFN-CPM models. 
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4.5 Using the Mass-Conserving Method to Create a Particle Tracking Library 
An alternative approach (still using the mass-conserving method) is to discretise the pathlines or in 
other words, limit the points a particle can pass through (say 24 per element).  By doing so, it is 
possible to create a “library” file which stores information on all possible particle tracks for a given 
model.  This can then be used to reconstruct any desired particle track the user may wish to 
consider. 

The benefits of this “discrete” scheme are as follows: 
1. The library file can easily be used by software other than ConnectFlow to produce particle 

tracks.  It is very convenient to produce particle tracks in the ConnectFlow visualisation 
package since they can be instantly visualised and quickly modified if necessary. 

2. The library file is slow to calculate, but once it has been produced, particle tracking is much 
faster to accomplish. 

3. The library can be constructed in a probabilistic manner so that the particles can take 
different routes dependent on random numbers generated during the particle tracking. 

To understand how the discretisation works, consider a hexahedral finite element.  In the mass-
conserving method this is broken down into 40 tetrahedra, and a constant Darcy velocity is 
calculated for each.  Particles can then be tracked across the finite element using those velocities.  
In the continuous scheme, particles are free to enter and exit the element at any point.  In the 
discrete scheme, the entry and exit points are limited to a few fixed points on the element, known as 
transport nodes.  Consider Figure 4-7; this shows 4 and 16 transport nodes arranged evenly on each 
surface of the element.  The number can be increased to 36 or more if required.  In general, the 
number of transport nodes per surface is given by m=4n2, where n is a positive integer chosen by the 
user. 

 
Figure 4-7: Transport nodes are arranged on the surface of each element.  The number of nodes per surface (m) is given by m=4n2 where 
n is an integer chosen by the user 

Transport nodes are assigned for every element.  When two elements share a surface, the transport 
nodes on that surface are only stored once, so there are never two transport nodes at exactly the 
same position (an exception to this is on constraint boundaries, which are discussed later). 

Particle tracks are calculated starting from each transport node using the mass-conserving method.  
These are followed until they leave the element(s) the transport node is located on.  The positions 
the tracks leave the elements are used to select “destination” nodes which are stored in a file.  This 
file then forms a library of the links between transport nodes, and can be used by ConnectFlow to 
produce particle tracks for a CPM region. 
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To make the calculation probabilistic, four paths are calculated from each transport node.  The start 
points for each are offset a small distance from the location of the transport node, so that they 
produce different destinations.  There is also a slight offset away from the surface towards the inside 
of the element.  To describe this offset requires a third local coordinate t of range [-1, 1]. In that 
coordinate, the offset is 0.002. (This helps when particles skim along the CPM-DFN boundary in 
combined models). 

A particle is tracked from each of the four start points to the element boundary. The surface 
quadrants associated with these exit point are used to determine the destination nodes (see Figure 
4-8). 

 
Figure 4-8: The destination nodes are chosen from the surface quadrant the particle leaves from.  If m=4 (left) then there is only one node 
on each quadrant but if m=16 (right) there are four. In the latter case the four possibilities are assigned probabilities according to how far 
they are from the exit point. 

When m=4, the destination node for each start point is the single transport node on the surface 
quadrant the particle arrives at (note that the flux is constant over the quadrants of a hexahedral 
surface in the mass-conserving method.) Since there are four start points per destination node and 
one possible destination for each there are potentially four destination nodes for each transport 
node. Typically each is assigned a 25% probability. However, if two paths go to the same transport 
node then that destination has a 50% probability. Also, if the destination node is on the same surface 
quadrant as the start node then the probability is set to zero for that destination (this also applies if 
m>4).  The “good” destinations would then be re-weighted to make sure the total probability was 
equal to 100%. 

Pathline libraries can be calculated for any model appropriate for mass-conserving pathlines (see 
previous section). 

Pathline calculations begin by specifying the starting coordinates for each pathline.  The library 
contains the coordinates of each transport node which are used to find the node closest to each 
pathline starting point.  Each particle is then tracked in the following manner.  After the first 
transport node is determined, all of the possible destination nodes are obtained and a random 
number between 0 and 1 is calculated and used to select the destination nodes whose total 
probability should always sum to one.  Once the destination node is selected, the destination nodes 
for that node are obtained, and so on until the particle gets to the boundary and the algorithm stops.  
Due to this probabilistic approach, 2 particles starting from identical positions can take increasingly 
different paths the greater the number of steps they take. 
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4.6 Rock Matrix Diffusion 
Rock matrix diffusion (RMD) [Neretnieks, 1980] is the process of diffusion from fracture water into 
the less mobile water within the rock matrix. The equations for groundwater flow and solute transport 
in the fracture system for a ConnectFlow equivalent continuous porous medium (ECPM) model on a 
large scale, with solute diffusion into the rock matrix between parallel equally spaced fractures (see 
[Hoch et al., 2004], based on [Carrera et al., 1998]), are:  

𝜕(𝜙𝑓𝜌𝑐)

𝜕𝑡
+ ∇ ∙ (𝜌�⃗�𝑐) = ∇ ∙ (𝜙𝑓𝜌𝐷 ∙ ∇𝑐) + 𝜎𝜌𝐷𝑖

𝜕𝑐′

𝜕𝑤
|
𝑤=0

  
Equation 4-4 

𝛼
𝜕(𝜌𝑐′)

𝜕𝑡
=

𝜕

𝜕𝑤
(𝜌𝐷𝑖

𝜕𝑐′

𝜕𝑤
) 

Equation 4-5 

where 
• 𝒒 is the specific discharge (or Darcy flux) [m/s]; 
• 𝜌  is the groundwater density [kg/m3]; 
• 𝑡 is the time [s]; 
• 𝜑𝑓 is the kinematic porosity due to the fractures carrying the flow [-]; 
• 𝐷𝑖 is the intrinsic diffusion coefficient for diffusion into the rock matrix, which is sometimes 

referred to as the effective diffusion coefficient, e.g. in the Swedish radioactive waste disposal 
programme [m2/s]; 

• 𝜎 is the specific fracture surface area, that is the average surface area of the fractures per unit 
volume [m-1], which is sometimes called the specific flow-wetted surface area, e.g. in the Swedish 
radioactive waste disposal programme. For smooth planar fractures, 𝜎 is given by 2P32, where P32 
is the fracture area per unit volume, which is a measure of fracture intensity; 

• 𝑤 is the distance from the fracture surface into the rock matrix [m]; 
• 𝑐 ′ is the solute mass fraction in the groundwater in the matrix [-]; 
• 𝛼 is the capacity factor of the matrix [-]. 

Equation 4-4 corresponds to conservation of solute in the fractures (allowing for diffusion into the 
matrix) and Equation 4-5 is diffusion within the matrix, based on Fick’s second law. The equations 
have been written in a form that is valid for variable groundwater density, but for the current 
implementation, the density is taken to be constant. 

For non-sorbing solutes, the capacity factor in Equation 4-5 would normally be taken to be equal to 
the accessible porosity in the rock matrix, 𝜑𝑚. However, it is envisaged that it might also be used to 
model migration of solutes which might be sorbing. In order to allow for this, Equation 4-5 was 
written in the more general form using the capacity factor rather than the rock-matrix porosity. For a 
sorbing solute, the capacity factor would be given by 

𝛼 = 𝑅𝜑𝑚 Equation 4-6 
where 𝑅 is the retardation due to equilibrium sorption of the solute to the rock matrix [-]. The 
description in terms of the capacity factor also facilitates modelling possible cases in which a solute 
is excluded from part of the matrix porosity because of ionic effects. 

The equations given above have to be supplemented by appropriate boundary and initial conditions. 
Suitable boundary conditions for the groundwater flow equations (Equation 2-1 and Equation 2-2)) 
are prescriptions of either the groundwater pressure or the groundwater flux around the boundary of 
the domain modelled. Suitable boundary conditions for the equation for solute transport (Equation 
4-4) are prescriptions of the solute mass fraction in the fractures at the domain boundary or the flux 
of solute into the groundwater in the fractures. The boundary conditions for Equation 4-5 are that the 
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solute mass fraction in the groundwater in the matrix at the fracture surface is equal to the solute 
mass fraction in the groundwater in the fractures locally: 

𝑐 ′(𝑤 = 0) = 𝑐 Equation 4-7 
and that the flux of solute in the matrix is zero at the maximum penetration depth 𝑑 into the matrix: 

−𝐷𝑖
𝜕𝑐 ′

𝜕𝑤
(𝑤 = 𝑑) = 0 

Equation 4-8 

In the original RMD method in ConnectFlow, transport in the rock matrix is modelled analytically and 
the term for the flux between the rock matrix and the fractures from Equation 4-4   

𝜎𝜌𝐷𝑖
𝜕𝑐 ′

𝜕𝑤
|
𝑤=0

 
Equation 4-9 

is expressed as  

𝐴𝑛 +𝐵
(𝑐𝑛 − 𝑐𝑛−1)

(𝑡𝑛 − 𝑡𝑛−1)
 

Equation 4-10 

where 𝑐𝑛 is the concentration in the fracture system at the end of time step 𝑛 and𝐴𝑛 and 𝐵 do not 
depend on 𝑐𝑛. 𝐴𝑛 and 𝐵are calculated from the concentrations in the fracture system at previous 
time steps. It should be noted that in [Hoch et al., 2004] the definitions of 𝐴𝑛and 𝐵are reversed, 
however the order above matches the actual implementation in ConnectFlow. This RMD method is 
not compatible with reactive transport as it cannot take into account the changes in solute 
concentration as a result of chemical reactions. 

4.6.1 Finite Volume Implementation of Rock Matrix Diffusion 
A finite volume rock matrix diffusion method has been implemented to allow the effects of rock 
matrix diffusion to be modelled in situations where chemical reactions are being calculated. This 
method may also be used where no chemical reactions are being calculated.  The original method of 
RMD is still available in ConnectFlow, the equations for which are given above. 

The original RMD method uses an expression for the flux into the rock matrix derived from an 
analytic model. The new method models the diffusion of solutes between cells in the rock matrix 
using a finite volume method. The flux between the fracture and matrix can then be calculated. This 
new method more readily provides a detailed description of the distribution of solutes within the rock 
matrix.  It is also straightforward to generalise the approach to handle chemical reactions in the rock 
matrix. A simplified schematic of the two methods is shown in Figure 4-9. With the new method, the 
user selects the number of cells that the rock matrix is divided up into per fractured rock finite 
element and also may choose if these are to be of equal length or have varying lengths. As changes 
in matrix water composition due to diffusion are greatest closest to the fracture, smaller cell sizes for 
the first few matrix cells may improve accuracy, whilst larger cell sizes for the other matrix cells will 
help performance without a significant reduction in accuracy.  



ConnectFlow Technical Summary 

© Amentum. All rights reserved. 49 
 

 
Figure 4-9: Simplified schematic of the original and finite volume rock matrix diffusion methods. The blue arrows show flow within the 
fractures, the large black arrows show flow between the fractures and the rock matrix, and the small black arrows show flow within the 
rock matrix. 

The finite volume RMD method uses a simple 1D finite-volume discretisation to model the diffusion 
in the rock matrix. This method provides computational efficiency with reasonable accuracy for a 
given level of refinement. The rock matrix is discretised into 𝑁 cells of length 𝛥𝑤𝑖. The user may 
choose whether to set all the cells to the same size of whether to define the length of each cell 
separately by rock type. With constant-density assumed, for a general cell, a simple fully implicit 
discretisation in time (backward Euler) leads to the equation 

𝛼
(𝑐 ′𝑖

𝑛+1
− 𝑐 ′𝑖

𝑛
)

𝛥𝑡
=
𝐷𝑖
𝛥𝑤𝑖

{
(𝑐 ′𝑖+1

𝑛+1
− 𝑐 ′𝑖

𝑛+1
)

1
2
(𝛥𝑤𝑖 + 𝛥𝑤𝑖+1)

−
(𝑐 ′𝑖

𝑛+1
− 𝑐 ′𝑖−1

𝑛+1
)

1
2
(𝛥𝑤𝑖−1 + 𝛥𝑤𝑖)

} 
Equation 4-11 

where 𝐷𝑖 is the intrinsic diffusion coefficient [m2/s], 𝛼 is the capacity factor of the matrix [-] and 𝑐′𝑖
𝑛 

refers to the discretised value of 𝑐′ at time 𝑛𝛥𝑡 for the cell 𝑖. The backward Euler scheme is first-
order accurate and is often unconditionally stable, but can be inaccurate for large time steps. 

Rearranging, this can be written as 

𝐸𝑖𝑐
′
𝑖−1
𝑛+1

+ 𝐹𝑖𝑐
′
𝑖
𝑛+1

+ 𝐺𝑖𝑐
′
𝑖+1
𝑛+1

= 𝐻𝑖 Equation 4-12 

where 𝐸𝑖, 𝐹𝑖, and 𝐺𝑖  are constants (i.e. independent of 𝑐 ′𝑖
𝑛

) 

𝐸𝑖 = −
2𝐷𝑖𝛥𝑡

𝛼𝛥𝑤𝑖

1

(𝛥𝑤𝑖−1 + 𝛥𝑤𝑖)
 

Equation 4-13 
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Equation 4-14 

 

𝐺𝑖 = −
2𝐷𝑖𝛥𝑡

𝛼𝛥𝑤𝑖

1

(𝛥𝑤𝑖 + 𝛥𝑤𝑖+1)
 

Equation 4-15 
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𝐻𝑖 = 𝑐
′
𝑖
𝑛

 Equation 4-16 
The coefficients in this equation are modified at the ends of the grid to represent the specified 
boundary conditions. At the left hand end of the grid, where matrix concentration equals the fracture 
concentration, 

𝐸1 = 0 Equation 4-17 
 

𝐹1 = 1 +
𝐷𝑖𝛥𝑡

𝛼𝛥𝑤1
(
2

𝛥𝑤1
+

2

(𝛥𝑤1 + 𝛥𝑤2)
) 

Equation 4-18 
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2𝐷𝑖𝛥𝑡
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(𝛥𝑤1 + 𝛥𝑤2)
 

Equation 4-19 

 

𝐻1 = 𝑐
′
1
𝑛
+
2𝐷𝑖𝛥𝑡

𝛼𝛥𝑤1

𝑐𝑛+1

𝛥𝑤1
 

Equation 4-20 

and at the right-hand end of the grid, where there is a zero concentration gradient, 

𝐸𝑁 = −
2𝐷𝑖𝛥𝑡

𝛼𝛥𝑤𝑁

1

(𝛥𝑤𝑁−1 + 𝛥𝑤𝑁)
 

Equation 4-21 

 

𝐹𝑁 = 1 +
2𝐷𝑖𝛥𝑡

𝛼𝛥𝑤𝑁
(

1

(𝛥𝑤𝑁−1 + 𝛥𝑤𝑁)
) 

Equation 4-22 

 

𝐺𝑁 = 0 Equation 4-23 
 

𝐻𝑁 = 𝑐
′
𝑁
𝑛

 Equation 4-24 
The discretised equations form a tridiagonal system, which can be readily solved using the Thomas 
algorithm [Thomas, 1949]. 

The case of interest is slightly more complicated than this because the equations involve the 
unknown 𝑐, which is the value of the solute mass fraction in the fracture system at the end of the 
time step. However, this can be readily handled as follows. Equation 4-12 can be written in the form 

𝐸𝑖𝑐
′
𝑖−1
𝑛+1

+ 𝐹𝑖𝑐
′
𝑖
𝑛+1

+ 𝐺𝑖𝑐
′
𝑖+1
𝑛+1

= 𝐻1𝑖 + 𝐶
𝑛+1𝐻2𝑖 Equation 4-25 

where, from Equation 4-16 and Equation 4-20, 

𝐻1𝑖 = 𝑐
′
𝑖
𝑛

 Equation 4-26 
and 

𝐻2𝑖 = {

𝐷𝑖𝛥𝑡

𝛼𝛥𝑤1

1

𝛥𝑤1
   𝑖 = 1

0               𝑒𝑙𝑠𝑒

 
Equation 4-27 
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Equation 4-25 is a linear equation for 𝑐 ′
𝑛+1

and so the solution is given by  

𝑐 ′𝑖
𝑛+1

= 𝑐 ′1,𝑖
𝑛+1

+ 𝑐𝑛+1𝑐′2,𝑖
𝑛+1

 Equation 4-28 

where 𝑐′1,𝑖
𝑛+1 and 𝑐 ′2,𝑖

𝑛+1
  are the solutions of the linear system for right-hand sides H1i and H2i 

respectively, i.e. 

𝐸𝑖𝑐
′
1,𝑖−1
𝑛+1

+ 𝐹𝑖𝑐
′
1,𝑖
𝑛+1

+ 𝐺𝑖𝑐
′
1,𝑖+1
𝑛+1

= 𝐻1𝑖  Equation 4-29 

 

𝐸𝑖𝑐
′
2,𝑖−1
𝑛+1

+ 𝐹𝑖𝑐
′
2,𝑖
𝑛+1

+ 𝐺𝑖𝑐
′
2,𝑖+1
𝑛+1

= 𝐻2𝑖  Equation 4-30 

Then the contribution to solute transport in the fracture system from the matrix 

𝜎𝜌𝐷𝑖
𝜕𝑐 ′

𝜕𝑤
|
𝑤=0

 
Equation 4-31 

is given by 

2𝜎𝜌𝐷𝑖
𝛥𝑤1

(𝑐 ′1
𝑛+1

− 𝑐𝑛+1) =
2𝜎𝜌𝐷𝑖
𝛥𝑤1

(𝑐 ′1,1
𝑛+1

+ 𝑐𝑛+1𝑐′2,1
𝑛+1

− 𝑐𝑛+1) 
Equation 4-32 

which can be written in the form shown in Equation 4-10.  

Once an expression for the flux has been found (in terms of An and B) then the transport calculation 
can be performed to calculate a value of the fracture concentrations at the latest time step. This can 
be used in Equation 4-28 to calculate equivalent values of the matrix concentration at that time step. 

4.7 Reactive Transport 
ConnectFlow is able to combine groundwater flow and transport calculations with geochemical 
calculations (reactive transport) [Joyce et al., 2014]. At each time step, the mass fractions of solute 
components are updated based on the results of chemical reaction calculations. The chemical 
reactions are calculated by the iPhreeqc software library [Charlton et al., 2011], which encapsulates 
and provides access to the widely respected PHREEQC geochemical software [Parkhurst et al., 
1999]. The data produced by iPhreeqc are used to update the mass fractions of components for the 
next time step in ConnectFlow. Chemical reactions are calculated for both the equivalent continuous 
porous medium (ECPM) representation of fractures and the rock matrix. The chemical calculations 
are based on a set of thermodynamic constraints defined in a separate, user-specified, database file 
in PHREEQC format. 

In order to perform calculations of chemical reactions, groundwater transport must be carried out in 
terms of the transport of solute components since the quantities of each individual component may 
be changed by the chemical reactions. PHREEQC expresses all chemical equations in terms of 
master species, with one master aqueous species associated with each element, e.g. Ca2+, or 
element valence state, e.g. Fe2+ and Fe3+. Therefore, each transported component represents a 
master species from the user-specified PHREEQC thermodynamic database that defines the 
reactions. Only those master species present in the groundwater under consideration or are 
produced as a consequence of the chemical reactions need to be included for transport. The 
transported quantities are the total amounts of each element master species. However, to fully 
define the chemical state of the system, three additional components must always be defined, 
namely H (total hydrogen not included in water molecules), O (total oxygen not included in water 
molecules) and E (charge balance). It is necessary to know the quantity of H and O, since they are 
constituents of some species involved in chemical reactions, but since the quantity included in H2O 
is known from the quantity of water, it is not necessary to transport the H and O included in water 
molecules and it is more accurate not to do so. The charge balance, E, should be zero for a physical 
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system, but due to numerical rounding it is typically in the range 1.0∙10-18 to 1.0∙10-12. Transporting 
E prevents numerical charge imbalances arising from the chemistry calculations accumulating due 
to transport. 

Transport of solutes is calculated using multi-component solute transport. However, for the transport 
of many components it is not usually practicable to solve the full set of coupled equations 
simultaneously. In this case, sequential iteration can be used as an operator splitting method to 
decouple the equations and solve each groundwater flow and transport equation separately within 
each time step. Multiple iterations of the sequence of equations can be carried out for increased 
accuracy at the expense of computational time, but normally a single iteration is sufficient for a 
system that is evolving slowly relative to the time step size. The boundary conditions and initial 
conditions can either be defined in terms of the individual components or they can be defined in 
terms of reference waters. Each reference water defines a particular solution composition and is 
often associated with water of a particular origin, e.g. sea water. Reference waters can be pre-
reacted and charge balanced. Figure 4-10 shows a flow diagram describing the reactive transport 
system in ConnectFlow. 

 
Figure 4-10. Flow diagram showing the stages of a reactive transport calculation. 
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The following reactive transport features are implemented in ConnectFlow: 
• Mineral equilibration reactions; 
• Ion exchange reactions; 
• Surface complexation reactions; 
• Kinetic reactions; 
• Spatially varying minerals (uniform, by rock type or by finite element); 
• Formation of secondary minerals (minerals not initially present, but generated by chemical 

reactions) and their equilibration with solutes; 
• Pore clogging. 

Reactions at equilibrium are governed by a mass-action equation: 

𝐾𝑖 = 𝑎𝑖 ∏ 𝑎𝑚
−𝜈𝑚,𝑖

𝑚=𝑀𝑎𝑞

𝑚=1

 
Equation 4-33 

where Ki is the temperature-dependent equilibrium constant of species i, ai is the activity of species 
i, Maq is the total number of master species in its formation reaction, am is the activity of master 
species m, νm,i is the stoichiometric coefficient of master species m in the chemical equation forming 
species i. Terms on the right-hand side of the reaction equation are given negative coefficients and 
terms on the left-hand side are given positive coefficients. A master species is associated with each 
element, e.g. Ca2+, or element valence state, e.g. Fe2+ or Fe3+.  

The activity of a species, ai, is related to its molality, mi, [moles per kg of water] by 

𝑎𝑖 = 𝛾𝑖𝑚𝑖  Equation 4-34 
where γi is the activity coefficient of species i. 

Reactions that do not reach equilibrium within the timescales of interest are kinetically controlled. 
The changes in concentrations of solutes associated with the dissolution of non-equilibrium solids 
are given by the rate equation: 

𝑑𝑚𝑖

𝑑𝑡
= 𝜈𝑖,𝑘𝑅𝑘 Equation 4-35 

where mi is the molality of species i [moles per kg water], t is time [s], νi,k is the stoichiometric 
coefficient of species i for substance k, and Rk is the overall reaction rate [mol/kg/s] for the 
dissolution of solid k. The changes in solute concentrations are calculated by integrating over time 
using a Runge-Kutta scheme with up to six intermediate evaluations of the derivatives. The 
integration time is adjusted to maintain an error estimate to within a user-specified tolerance. The 
overall reaction rate, Rk, for solid, k, is: 

𝑅𝑘 = 𝑟𝑘
𝐴0
𝑊
(
𝑚𝑘

𝑚0𝑘
)
𝑛

 
Equation 4-36 

where rk is the specific rate [mol/m2/s], A0 is the initial surface area [m2] of the solid, W is the mass of 
solution [kg], m0k is the initial number of moles of solid, mk is the number of moles of solid at a given 
time and the term (mk/m0k)

n is a factor to account for changes in A0/W during dissolution and ageing 
of the solid. 

The actual reactions available will be those present in the thermodynamic database supplied by the 
user. If the model has temperature variation then this will be reflected in the reaction temperatures, 
if supported by the thermodynamic database. Typically the reactions will be valid up to ionic 
strengths of around 3 moles per litre for thermodynamic databases with appropriate ionic strength 
treatments and parameters (such as SIT), but only to 0.3 moles per litre when the Davies equation is 
used. Rate expressions for kinetic reactions are also given in the thermodynamic database. 
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Treatment of spatially varying minerals and secondary minerals allows minerals to be created and 
depleted across the model and their quantities to be initially specified in a flexible way and the 
evolution of the quantities to be monitored. The pore-clogging facility allows the permeability and 
porosity of the rock to be modified due the volume changes in minerals as a result of precipitation or 
dissolution. The change in permeability as the porosity changes is calculated as: 

𝐾 = (
𝜑

𝜑0
)
3

𝐾0 
Equation 4-37 

where K is the updated permeability [m2], K0 is the original permeability, ϕ is the updated porosity [-] 
and ϕ0 is the original porosity. Changes in porosity in the rock matrix due to chemical reactions are 
not currently included. 

Various output options are available to export the chemical composition at selected locations in the 
model as mass fractions of chemical components, pH and pe. Also there is a facility to carry out 
additional chemistry on solute compositions at selected times, which provides access to the 
quantities of different chemical forms, e.g. bicarbonate and carbonate in the case of carbon. 

A finite volume method for rock matrix diffusion (RMD) is provided within Connectflow (see 
section 4.6.1) that allows a flexible discretisation of the rock matrix and is compatible with chemical 
reactions (unlike the original RMD method). The method allows chemical reactions to be carried out 
for each cell in the rock matrix, and the full solute composition, including its distance dependence, 
can be output for analysis. The temperature is also needed for the chemistry calculations so this is 
assumed to be the same for the rock matrix as at the centre of the associated fractured rock finite 
element. For cases where the density is needed (where the water compositions are given in the form 
of concentrations, rather than mass fractions), the rock matrix pore water density is calculated using 
the rock matrix pore water salinity along with the pressure and temperature  at the centre of the 
associated fractured rock finite element. 

The sequential iteration transport calculations and the chemistry calculations have been parallelised 
to provide improved run-times on multi-processor computers and compute clusters via the Message 
Passing Interface (MPI) approach. Additional improvements in performance can be achieved by 
specifying a threshold for chemistry calculations. This threshold specifies a minimum relative 
change in the mass fraction of any component at each location that needs to occur, since the last 
time chemistry was calculated at that location, before chemistry is calculated again at that location. 
The use of a calculation threshold reduces the number of chemistry calculations in parts of a model 
where the groundwater composition is evolving very slowly. However, calculation thresholds cannot 
be used with kinetic reactions. 
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5 Concepts within the Discrete Fracture Network model 
In many geological formations, the primary flow is through a connected network of discrete fractures 
(DFN). This provides a very heterogeneous system, and the fracture-network geometry can lead to 
dispersion of any solute being transported through the formation. It is often necessary to show 
sufficient understanding of the flow system to give confidence that predictions of the large-scale 
properties of the flow system can be made from the results of field-scale investigations. In order to 
build confidence, it is important to show a very detailed understanding of field experiments that are 
generally on scales at which the influence of the fracture-network geometry is significant.  The 
geometry and connectivity of the fracture system and the possibility of hydraulically important 
pathways through the network can play an important role in determining the scale dependence of 
the effective properties of the system.  Indeed, one of the early motivations for the development of 
the DFN approach was to develop an understanding of the scale dependence of the effective 
dispersion parameters for radionuclide transport through fractured rock, which had been inferred 
from field data ([Smith et al., 1984] for example). 

In the DFN approach, the geometry of the fracture-network is accounted for explicitly. The approach 
is needed to describe or predict aspects of the performance of the fractured system where the 
geometry of the fracture-network plays a significant role. Some examples of such circumstances are: 

• representations of any flow experiments where the fracture connectivity is important, which in 
practice means almost all interpretations of field experiments where a detailed understanding is 
needed; 

• prediction of the effective flow properties of the fracture-network system and of the scale 
dependence of effective properties; 

• prediction of the effect of the fracture-network geometry on the effective dispersion for solute 
transport; 

• prediction of the effect of the fracture-network geometry on the effective hydraulic diffusivity of 
the pressure field in response to a pressure change and the inferred radius of influence of 
pressure tests. 

From the above list, it can be seen that an understanding of the role of the fracture geometry can be 
important in almost all aspects of an investigation of a fractured rock system. The two main reasons 
that such discrete models are not more commonly used are the complexity of the models and the 
fact that stochastic models inevitably require uncertainty to be addressed formally. 

The complexity means that many data are required to characterise fracture systems adequately.  
Whilst there are still issues to be resolved in the experimental characterisation of fracture-network 
flow geometry, a number of research projects for the radioactive waste industry have demonstrated 
the feasibility of collecting suitable basic input data [Bolt et al, 1995; Geier et al., 1992; Herbert et 
al., 1991b, Olsson et al., 1995]. Understanding fracture channelling and the extent of the flow 
wetted surface of the fracture are still research tasks, but simple assumptions can be made and the 
other data interpreted consistently so that the resulting fracture-network geometry reproduces key 
features of the physical network.  In many cases, however, there will be a balance between the 
benefits of a more detailed representation of the system, and the increased cost of collecting data 
for which there may be significant uncertainty. 

The second reason why the discrete fracture-network approach is not more widely used is the need 
to treat predictions in a probabilistic framework and consider the uncertainty due to the details of 
the fracture geometry directly.  Fracture-network models are necessarily stochastic since it is not 
possible to determine the location and extent of each flow-conducting or mechanical break in the 
rock.  Instead a stochastic approach is used, in which the statistics of the fracture system are 
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determined and realisations of the fracture-network geometry that exhibit the same statistics as the 
physical system are generated and used for simulation.  This means that a discrete fracture-network 
approach does not predict the result of a given experiment.  Instead, it predicts a probability 
distribution of equally likely results given the stochastic description of the fracture geometry and 
properties.  This realisation-dependent uncertainty corresponds to a lack of knowledge of the 
precise fracture geometry.  In many respects this is an advantage of the approach over deterministic 
models since the uncertainty is real and unavoidable.  Conventional approaches often make single-
valued predictions, however this is simply not facing up to the reality of uncertainty. 

Applications of DFN modelling include: 
• interpreting site characterisation data; 
• modelling of flow and transport in regional fracture-network systems; 
• obtaining effective properties as data input to large-scale effective porous medium models. 

In site characterisation programmes, DFN modelling has been used to validate the fracture network 
approach by comparing data from hydrogeological experiments in fractured rock (e.g. well tests) 
against model predictions.  As part of the assessment of post-closure performance of potential deep 
repositories, discrete fracture-network models have been used to predict the groundwater pathways 
by which radionuclides released from a repository might return to the environment.  Effective 
properties have been obtained using ConnectFlow’s DFN capabilities for input into large-scale 3-D 
porous medium models or reservoir simulators (for example [Scaefer et al., 1995]). 

DFN modelling can be broken up into two phases: 
• Creation of a DFN model. 
• Performing calculations on this model, such as solving for groundwater flow, upscaling of 

properties for use in a CPM model, solute transport and various analyses. 

The creation of a DFN model will be discussed in subsequent sections and involves: 
• definition of the model domain; 
• fracture generation; 
• inclusion of engineered features (boreholes, tunnels or shafts); 
• calculation of fracture intersections. 
• provision of boundary conditions; 

The calculations that can be performed are detailed in Chapter 6. 

5.1 Model Domain 
The model is defined within a domain formed from the union of a number of (possibly irregular) 
hexahedra or “region elements”. The region elements are defined by supplying a list of the 
coordinates of the vertices belonging to each element. Where the faces of two region elements are 
joined, the four corners of the adjacent sides must be coincident. The faces of the region elements 
need not be planar. In general, they form bilinear surfaces. An example of a complex flow domain is 
shown in Figure 5-1. 
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Figure 5-1: An example of a complex flow domain built from 37 irregular hexahedra.  

5.2 Fracture Generation 
An individual planar fracture is completely defined by: 

• the location of its centre; 
• three orientation angles (dip angle, ψ, dip direction, α, and orientation, ω); 
• the lengths of each side (or in the case of square fractures, a single length); 
• an effective hydraulic aperture or transmissivity (and possibly the variation of aperture within the 

fracture). 

The definition of the orientation angles (ψ, α, ω) relative to the Cartesian coordinate system (x, y, z) 
is shown in Figure 5-2. It is usual to orient the axes such that x is east, y is north, and z is vertically 
upwards. 

Fractures can either be “known” (deterministic) in which case the above properties are specified 
explicitly, or “random” in which case the fracture properties can be sampled from a wide range of 
statistical distributions. 
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Figure 5-2: The angles describing the orientation of a fracture, in relation to the coordinate axes and the normal to the plane, n. ψ: the dip 
angle, α: the dip direction, ω: the orientation angle. 

5.3 Fracture Network Characterisation 
This section describes the main methods for inferring fracture-network geometries from field 
measurements of the fracture-network properties [Dershowitz, 1984; Herbert et al., 1990]. This is 
the first major task the user faces in three-dimensional simulations. Analogous methods are used in 
the derivation of appropriate two-dimensional equivalent networks. 

The key parameters used to characterise a fracture-network are: 
• identification of independent fracture sets; 
• the distribution of fracture orientations; 
• the statistical process for generating the fracture locations in space; 
• the fracture density; 
• the distribution of fracture lengths; 
• and the distribution of fracture transmissivities. 

When characterising the fracture orientation distribution, it is generally found that the fractures can 
be divided into a number of distinct fracture sets.  These sets of fractures comprise fractures that 
can be characterised by common distributions of parameters, and which have a common origin and 
history. 

These fracture sets are often defined in terms of their orientation distributions that tend to be 
clustered around preferred orientations of the normals to each fracture plane projected on to a lower 
hemisphere.  This definition of the characteristic orientation is best achieved by using conventional 
statistical methods to identify distinct clusters.  The fractures can then be separated into their 
distinct sets and further parameters inferred for each set independently. 

The distribution of fractures has commonly been assumed to be uniform in space with just a single 
fracture density being used to specify how many fractures to generate.  An equivalent approach to 
using a fracture number density is to generate fractures up to a specified area density of fracture 
surfaces per unit volume. Sampling the various distributions of the parameters generates the 
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fractures. The positions of the fracture centres are generated assuming a Poisson process.  Care 
must be taken to avoid edge effects, and this is usually accomplished by generating the fracture-
network in a larger region than that to be simulated.   

The fracture density may be obtained from the spacing of fractures along a scan line on a mapped 
exposure, or from a fracture log along a borehole or core.  Each distinct set of fractures has its own 
characteristic distributions of properties, and the density of each of these fracture sets is usually 
determined independently. For a given fracture set, the number density, ρ, is given in terms of the 
mean spacing of intersections along a straight line, �̄�, by: 

�̄� = (𝜌�̄�)−1 Equation 5-1 
where �̄� is the mean projected area of the fractures onto a plane perpendicular to the measurement 
line. 

The fracture set length distribution is one of the more difficult parameters to infer since we have only 
one- or two-dimensional data from which to infer a length distribution that will only be fully 
determined by a three-dimensional description.  A number of assumptions need to be made at this 
stage.  First, it is difficult to characterise the shape of the transmissive area of the fracture plane.  It is 
generally assumed that this surface has a simple geometry.  In the DFN module of ConnectFlow, it is 
assumed to be rectangular. 

Once the fracture shape has been fixed, then one can use analytical results giving the relationship 
between the distribution of fracture lengths to the distribution of fracture trace lengths as measured 
on a large two-dimensional trace plane intersecting the network. For example, for square fractures of 
side length distribution, L, the moments of the length distribution, Li, are related to the moments of 
the corresponding distribution, t, of fracture traces measured on a large trace mapping plane by: 

𝑡1 =
𝜋

4

𝐿2
𝐿1

 
Equation 5-2 

 

𝑡2 = [ln(1 + √2) −
√2 − 1

3
]
𝐿3
𝐿1

 
Equation 5-3 

where Li are the i-th moments of the length distribution and ti are the i-th moments of the trace 
length distribution.  Similar formulae can be obtained for higher moments. A common approach is to 
make an assumption as to the mathematical form of the distribution of fracture lengths and then 
either use these simple formulae between the means and second moments of the distribution, or to 
simply calibrate against statistics from a specific trace map.  In fact, the trace length to fracture 
length relationship is quite insensitive to the precise shape assumed for the fractures and there is 
relatively little difference between the results for circular or square fractures.  A more significant 
assumption is the choice of the mathematical form of the fracture length distribution. Typically, log-
normal or power law distributions are used. Although these often result in a good fit between the 
main parts of the simulated and measured trace length distributions, the goodness-of-fit of the tails 
of the two distributions is often less good.  A poor match in the tail of the distribution may result in 
the existence of extreme, unphysical fractures with very long traces.  These are quite unimportant to 
many of the statistics used to infer parameters but may have a much more important role in the 
network flow. 

Finally, the hydraulic properties of the fractures need to be defined. The usual assumption is that 
some form of the parallel plate law for plane fracture flow applies, but rather than measure a 
distribution of apertures directly, a more reliable approach is to infer a distribution of fracture 
transmissivities.  This too, generally relies on an assumption as to the form of the probability 
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distribution of fracture transmissivities. Generally the log-normal distribution is used.  With this 
distribution and a specified fracture spacing, then the mean and standard deviation of fracture 
transmissivities can be related to the mean and standard deviation of short interval packer tests in 
boreholes so long as it is assumed that the transmissivities of fractures intersecting the test section 
add to give the transmissivity of the test section. Strictly, fracture connectivity away from the 
borehole will affect the packer test results, but for short tests, the radius of influence of the test will 
be small and the measurements can be taken to correspond to the summation of local 
transmissivities.  The fitting process involves typically using maximum likelihood estimators and in 
general will require numerical evaluation of the best estimates.  Again, the results of the fracture 
property interpretation should be checked by simulation of the measurement process and it may be 
appropriate to infer the parameters of the distribution by calibrating directly against the 
experimental data (see [Herbert et al., 1990] for more detail). 

An alternative approach to generating the fracture-network, which is often used, is to generate 
fractures using an initial approximation and test the resulting network by simulating the experimental 
measurement procedures.  Then the network is modified to improve the correspondence between, 
for example, the numerically simulated log and the physical log.  This calibration procedure is 
particularly appropriate when simulations are made based on more complex statistical descriptions 
of the fracture properties and spatial densities.  Such simulated measurements should in any case 
be used to check the validity of the interpretation of the network parameters. 

5.4 Known Fractures 
For known (or deterministic) fractures, all properties are specified either within the ConnectFlow 
input or imported from a formatted file. There are several instances when the use of known fractures 
is appropriate. Firstly, when large-scale fracture zones are defined. The appropriate transmissivity 
for such zones may be obtained from hydraulic tests or by calculating an effective transmissivity 
based on a local scale stochastic model of the fracturing around the zone.  

Secondly, where the network has been well characterised, the stochastic network may be replaced 
by the set of fractures that have been measured. For example, a stochastic network of fractures may 
be generated based on a statistical analysis of the data from several boreholes. The random 
fractures around each borehole can then be replaced by the observed fractures at the borehole. This 
is a simple method of conditioning random simulations. 
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5.5 Random Fractures 
Separately parameterised sets of random fractures can be defined in a ConnectFlow DFN model. 
The locations of the centres of the fractures are distributed uniformly within a cuboidal region whose 
boundaries are set by the user. This region should be sufficiently larger than the flow domain, 
bearing in mind the expected size of the fractures, so that there is no reduced density of fractures 
near the edge of the flow domain. For each of the other fracture properties, the user specifies the 
distribution type and its parameters. 

In the DFN module, the following distributions are available: 
• constant; 
• uniform; 
• normal; 
• log-normal; 
• two parameter negative exponential; 
• triangular; 
• log-triangular; 
• univariate or bivariate Fisher (for dip angles and dip directions only); 
• truncated log-normal; 
• power-law (for fracture lengths only). 

Given this information, fractures are generated randomly up to a user-prescribed density. A typical 
generated fracture-network is shown in Figure 5-3. 

 
Figure 5-3: An example of a fracture-network generated within a cuboid flow domain. The fractures are coloured according to the 
logarithm of transmissivity: red for high transmissivity, blue for low. 
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5.5.1 Variable Apertures on Fractures 
As well as fractures each having a uniform aperture, ConnectFlow can represent the random 
variations of aperture within a given fracture. This option may be specified for some or all of the sets 
of random fractures, and also on a known fracture. The local values of the aperture are generated 
from a log-normal distribution with standard deviation prescribed by the user. With a known fracture, 
the mean value of the distribution is simply the aperture given by the user. 

In the case of a random fracture, a value is first randomly sampled in the same way as for a uniform 
fracture, but this value is then used as the mean aperture about which the local aperture distribution 
on the fracture is generated. Note that the standard deviation of the aperture distribution for a single 
fracture need not be the same as the standard deviation of the mean apertures of the fracture set. 

In reality, the apertures at nearby points on the same fracture may well be correlated to some extent. 
To represent this, the DFN module provides the user with the facility to specify a correlation length 
scale and one of 3 correlation functions (note that these are correlations for the distribution of the 
logarithm of the aperture): 

𝜌1(𝜉) = {
1 −

2𝜉

2𝑙
−
𝜉3

2𝑙3
, 𝜉 < 𝑙

0, 𝜉 ≥ 𝑙

 
Equation 5-4 

 

𝜌2(𝜉) = 𝑒𝑥𝑝(
−𝜉

𝑙
) 

Equation 5-5 

 

𝜌1(𝜉) = {
1 −

√(2𝜉𝑙 − 𝜉2)

𝑙
, 𝜉 < 𝑙

0, 𝜉 ≥ 𝑙

 
Equation 5-6 

where 𝜉 is separation and l is the correlation length scale. If uncorrelated apertures are required, this 
may be achieved by using either correlation function 1 or 3, with a zero correlation length. 

5.5.2 Fracture Subdivision (“Tessellation”) 
A simpler method of generating a variable transmissivity on each fracture (tessellated fractures) is to 
sub-divide the fractures into smaller fractures (sub-fractures) according to an approximate 
correlation length, and generate the transmissivity on each sub-fracture independently. In this way 
fractures are generated according to a specified length distribution, but then sub-divided such that 
no sub-fracture is longer than the correlation length. Hence, the number of fractures increases but 
the fracture area density is maintained. This method is more appropriate for large random networks. 

Another reason for sub dividing fractures is one of discretisation. The number of finite elements used 
to discretise each fracture is similar on every fracture, irrespective of the fracture length. If fracture 
lengths vary by orders of magnitude then large fractures may be under-refined, and small ones over-
refined. Hence, tessellation can be used to split large fractures into a network of sub-fractures of a 
more uniform size, and consequently a more uniform discretisation. In this case, the transmissivity of 
the sub-fractures is inherited from the transmissivity of the tessellated fracture from which it was 
created. 
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5.6 Engineered Features 
Since field experiments in fractured rock usually involve boreholes, a model feature (“borehole”) is 
provided to facilitate their incorporation in simulations. There is a further feature (“shaft”) to 
represent engineered features of larger radii such as tunnels or shafts. Both types of feature are 
specified by the coordinates of the two ends and a radius. Both models add extra flow connections to 
the network where the engineered features intersect fractures. Generally, if the radius of the 
engineered feature is small compared to the length of fractures then the borehole submodel is 
adequate, otherwise greater accuracy is gained by using the shaft model. For a borehole, only the 
fractures intersecting a line joining the two ends are hydraulically joined to the borehole. For a shaft, 
all fractures intersecting a cylinder with the specified radius and axis are hydraulically joined to the 
shaft. The axial hydraulic conductance (units of m3s-1) of the feature is calculated from the radius or 
from a specified permeability. The properties of a skin layer due to grouting or skin effects can be 
specified to limit radial flow. Section 6.9 gives more details on the simulation of flow around 
engineered features. 

Any two engineered features may be joined hydraulically. Hence, curved boreholes can be 
represented by several joined boreholes of varying inclination. Figure 4 gives an example of a 
complex model with many sections of engineered feature joined together to form a spiral tunnel. Two 
vertical shafts are also shown. 
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Figure 4: An example representation of a complicated system of tunnels (spiral) and shafts (vertical). Some region element edges, two 
large deterministic fractures, and a few random fractures are also shown. 

5.7 Fracture Intersections 
Once the fracture-network has been generated, the next step is to calculate all the fracture 
intersections. This allows an interpretation of the fracture-network connectivity. Intersections 
between the fracture planes and the boundaries of the flow domain are calculated, and part or all of 
a fracture falling outside the flow domain is discarded.  

The intersections are determined by solving the equation for the intersection of the two fracture 
planes using elementary geometry.  In order that large networks can be handled, the search for 
intersections is optimised by dividing the overall region into subregions and determining the planes 
wholly or partly within each subregion, and then only testing planes in the same subregion for 
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intersections.  In this way, the asymptotic cost of the calculation of the intersections is proportional 
to the number of planes rather than the square of the number of planes. The flow field is discretised 
by assigning a number of nodes, referred to as the global flow nodes, to each intersection. 

5.8 Boundary Conditions 
Boundary conditions are set on the boundaries of the flow domain. By default, ConnectFlow treats 
any boundary for which no condition is set as impermeable. For a permeable boundary, either a 
pressure distribution or a fluid mass flux can be specified. A pressure distribution can be defined in 
five ways: 
• a constant value may be set over the whole surface; 
• a linear pressure variation may be specified over the whole surface; 
• interpolated (bilinearly) from a set of pressure values at the region element vertices, the pressure 

values are specified in the input data file; 
• interpolated (bilinearly) from a regular mesh with pressure values that is read from a file; 
• assuming the pressure is equal to a specified initial condition (current value). 

For flux boundary conditions, a uniform fluid mass flux in units of kgm-2s-1 is specified over a 
boundary surface. A mass flux enters each fracture that intersects the surface. The amount of flux 
entering a particular fracture is weighted according to the length of the fracture’s trace, such that 
the total mass-rate entering the surface equals the mass flux value specified multiplied by the area 
of the surface. 

In addition to the boundary conditions set on the flow domain boundaries, the user may specify the 
pressure or flux on individual engineered features. 

For mass transport, the salinity can be specified on selected surfaces in the following ways;  
• setting a constant concentration boundary condition over the whole surface; 
• setting a linearly varying concentration boundary condition over the whole surface; 
• setting a zero dispersive flux (an outflow condition); 
• setting an inflow concentration (where inflow occurs), where there is outflow a zero dispersive flux 

is automatically applied; 
• assuming the concentration is equal to a specified initial condition (current value). 
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6 Numerical Methods used for Discrete Fracture Network Models 
This chapter details the various types of calculations that can be performed on DFN models by 
ConnectFlow. 

6.1 Geometric Analysis 
Prior to a flow calculation, useful information can be gained by analysis of the fracture intersections.  
One of the main characteristics of a fracture-network that controls the behaviour of the flow is the 
connectivity of the network. 

6.2 Percolation Analysis 
The most basic measure of connectivity is whether the fracture-network has a connection across the 
region or not.  This depends on the fracture density and the change from unconnected to connected 
networks is predicted by the percolation threshold.  The percolation threshold gives the density at 
which the size of connected clusters of fractures suddenly increases from a relatively small typical 
cluster size to the existence of a percolating cluster that spans the region.  The percolation threshold 
is quite a sharp transition: a small increase in fracture densities will change the network from one for 
which no realisations have connections across the model region to one for which all realisations are 
well-connected [Robinson, 1984].  This percolation threshold depends upon the statistical 
properties of the network, but for random networks there is a much more significant dependence on 
the dimension of the network geometry.  Three-dimensional networks become well connected at 
much lower fracture densities than two-dimensional networks. 

The ConnectFlow percolation option builds the network one fracture at a time. As each individual 
fracture is included, a list of fracture clusters is maintained and updated. If the fracture intersects 
any fracture belonging to an existing cluster it is added to the appropriate cluster list. If it intersects 
with two or more disjoint clusters, then the cluster lists are combined. If it is isolated, then a new 
cluster list is started. When a single cluster connects all the relevant boundary surfaces, percolation 
has occurred, and any remaining fractures in the original network may be discarded, if required. 

6.3 Steady State Constant Density Groundwater Flow 
Steady-state constant-density groundwater flow in a fracture network can be modelled in the current 
version of ConnectFlow.  The basic approach is very simple.  Groundwater flow in each fracture is 
modelled numerically.  Then the flow in the overall network is obtained by combining the flows in the 
different fractures, using the conditions that 

1. the groundwater pressure is continuous between two intersecting fractures; 

2. groundwater is conserved at an intersection, so that groundwater which flows out of one 
fracture flows into the other. 

The DFN module uses a Galerkin finite-element approach to modelling.  The Galerkin approach 
starts from the weak form of the governing equation, which is derived by multiplying the governing 
equation by an arbitrary test function in a suitable function space, and integrating over the domain, 
integrating by parts terms involving high-order derivatives (see Equation 6-4 below).  The benefit of 
this manoeuvre is that the weak form is equivalent to the original equation for sufficiently smooth 
functions, but it is also applicable to functions that are not as smooth, such as the functions derived 
by finite-element discretisation. 

In the finite-element method, the domain is discretised into ‘finite elements’ of simple shape.  On 
each element, a quantity of interest is approximated by a simple function, such as a polynomial, 
determined by the values at a small number of points, or nodes on the element.  This is equivalent to 
approximating the quantity of interest as a linear combination of certain basis functions that are 
associated with the nodes; the basis function associated with a node taking the value 1 at the node 
and 0 at all the other nodes.  The discretised equations are obtained by taking the test functions in 
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the weak form to be the set of basis functions for nodes where the value of the quantity is not 
specified by a Dirichlet boundary condition.  These equations are supplemented by the Dirichlet 
boundary conditions. 

                      
Figure 6-1: The finite element discretisation of a fracture in ConnectFlow (NAPSAC) and the approximation of intersections with other 
fractures by lines along finite-element boundaries. 

In the DFN module, the finite-element method is applied on two levels: individual fractures and 
fracture intersections.  Individual fractures are discretised into triangular elements as shown in 
Figure 6-1.  On each element, the residual pressure  

𝑃𝑅 = 𝑃 + 𝜌0𝑔(𝑧 − 𝑧0) Equation 6-1 
is approximated as a linear function.  Here 
• 𝑃 is the groundwater pressure; 
• 𝜌0 is a reference value of the groundwater density; 
• 𝑧 is the elevation; 
• 𝑧0 is a reference elevation. 

As noted above, this is equivalent to approximating the residual pressure on the fracture as a linear 
combination of the ‘local basis functions’.   

On the scale of the overall network, the residual pressure is characterised by its values at certain 
‘global nodes’ associated with the fracture intersections, which are approximated by lines along the 
boundaries of the elements representing the fracture (see Figure 6-1).  On a fracture, the global 
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basis function ΨI corresponding to a global node 𝐼  on one of the intersections with other fractures is 
taken to be the finite-element solution for steady-state groundwater flow on the fracture in the case 
in which the residual pressure is specified to be 1 at global node 𝐼  and 0 at all the other global nodes 
on the fracture. 

The steady-state groundwater-flow equation in the fracture is 

−∇ ∙ (
𝑒3

12𝜇
(∇𝑃𝑅)) = 0 

Equation 6-2 

where 
• e is the hydraulic aperture; 
• 𝜌 is the groundwater density; 
• 𝜇 is the groundwater viscosity; 
• 𝛻 denotes the two-dimensional gradient operator in the fracture. 

The possibility that the fracture aperture, and hence fracture transmissivity, may vary over the 
fracture surface is allowed.  The transmissivity 𝑇is generally taken to be related to the fracture 
aperture 𝑒 by the cubic law 

𝑇 =
𝜌𝑔𝑒3

12𝜇
 

Equation 6-3 

on the basis of flow between parallel plates [Snow, 1968]. 

The weak form of Equation 6-2 is 

∫ 𝛻𝑤 ⋅
𝑒3

12𝜇
𝛻𝑃𝑅

𝐹

+∫𝑤𝒏 ⋅ 𝒇
𝐵

= 0 
Equation 6-4 

where 
• 𝐹 is the fracture; 
• 𝐵 is that part of the boundary of the fracture on which the flux is specified.  Note that 𝐵 

includes both sides of intersections with other fractures; 
• 𝒏 is the unit normal to the boundary directed out of the domain; 
• 𝒇 is the groundwater flux density on 𝐵; 
• 𝑤 is a test function. 

The approach used in ConnectFlow allows considerable flexibility in the number and location of the 
global nodes.  This allows highly refined models to be used for accuracy or coarser models to be 
used in order to keep computational costs down, as appropriate.  However, the details of the method 
are quite complicated in the most general case.  Therefore, the basis of the approach is first 
presented in the case in which the global nodes are identical to the local nodes on the intersections 
(see Figure 6-2), and then the modifications for more complicated cases are indicated.  In the 
simplest case, the finite-element equations that characterise the global basis function for node 𝐼  
(denoted 𝜓𝐼 in this case) are 

∫ 𝛻𝜑𝑛 ⋅
𝑒3

12𝜇
𝛻𝜓𝐼𝐹

= 0, for local nodes 𝑛 not on intersections; Equation 6-5 

supplemented by the boundary conditions 

𝜓𝐼 = {
1  𝑓𝑜𝑟  𝑗 = 𝑙𝑜𝑐𝑎𝑙 𝑛𝑜𝑑𝑒 𝑖 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝐼

0  𝑒𝑙𝑠𝑒
  ,  Equation 6-6 

for local nodes 𝑗 on the intersections. 
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Figure 6-2: Intersections on a fracture in the case in which they lie along finite-element boundaries and the global nodes correspond to the 
local nodes on the intersections. 

These equations can be readily solved using a suitable numerical scheme.  In ConnectFlow, a direct 
solver, which employs a variant of Gaussian elimination, is used.  The solver is purpose-built to 
exploit the structure of the numerical equations resulting from the regular form of the finite-element 
grid used in ConnectFlow.  Essentially, the equations for the nodes at the centre of each rectangular 
block (see Figure 6-1) are eliminated first, to give a matrix with the same form as that for a regular 
rectangular discretisation.  This matrix is then solved used straightforward Gaussian elimination.  
This is a very efficient approach. 

It can easily be seen that the global basis function for global node 𝐼  is equal to the local basis 
function for the local node 𝑖  corresponding to 𝐼  plus a linear combination of local basis functions for 
local nodes 𝑛  not on intersections, that is  

𝜓𝐼 = 𝜑𝑖 +∑𝑏𝐼𝑛𝜑𝑛
𝑛

 Equation 6-7 

for certain constant coefficients 𝑏𝐼𝑛  (which depend on the geometry of the fracture and its 
intersections). 

Because of the linearity of the flow equation, the finite-element solution for steady-state flow on a 
fracture in the case in which the residual pressure has values 𝑃𝐼𝑅 at the global nodes is given by a 
linear combination of the global basis functions: 

�̂�𝑅 =∑𝑃𝐼
𝑅

𝐼

𝜓𝐼 
Equation 6-8 

It is easy to see that this ensures that the residual pressure is continuous between intersecting 
fractures (condition (i) above), because on each fracture the residual pressure on the intersection is 
given by the same interpolation between the global nodes on the intersection. 
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In accord with the basic Galerkin approach, condition (ii) above is imposed in a weak way: 

∑ ∫𝜓𝐼(𝛼)𝑄𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒( 𝛼)𝑑𝛼

intersecting fractures

= 0 Equation 6-9 

where 

• 𝛼 is a coordinate along the intersection; 
• 𝑄𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒(𝛼) is the flux to the intersection on the fracture. 

A key issue is how the flux to a fracture intersection is calculated.  In fact, in order to impose the 
constraint of Equation 6-9) it is not necessary to calculate the flux itself, but only the integrals that 
appear in Equation 6-9.  These are calculated from the following quantities 

𝑄𝑖 = −∫ 𝛻𝜑𝑖 ⋅
𝑒3

12𝜇
𝛻�̂�𝑅

𝐹

 
Equation 6-10 

As can be seen from Equation 6-4, if, rather than specifying a Dirichlet boundary condition on an 
intersection, the flux to the intersection were specified to be Q, then the finite element equation for a 
local node 𝑖 on the intersection would be 

−∫ 𝛻𝜑𝑖 ⋅
𝑒3

12𝜇
𝛻�̂�𝑅

𝐹

= ∫ 𝜑𝑖
Intersection

𝑄 
Equation 6-11 

The left hand-side of this equation is just 𝑄𝑖  so that it can be seen that it is natural to call this the flux 
to node 𝑖 on the intersection. 

Now, from Equation 6-6, 

𝜓𝐼 = 𝜑𝑖  on the intersection containing 𝑖 Equation 6-12 
where 𝑖 is the local node corresponding to global node 𝐼. 

(This is because all the other local basis functions appearing in Equation 6-5 are zero on the 
intersections.)  Thus, the integral that appears on the right-hand side of Equation 6-9 can also be 
written as 

∫ 𝜓𝐼
Intersection

𝑄 Equation 6-13 

Therefore, the quantities 𝑄𝑖  give the natural way to evaluate the integrals appearing in Equation 6-9.  
Further, it should be noted that 𝑄𝑖  can be expressed as 

𝑄𝑖 = −∫ 𝛻𝜓𝐼 ⋅
𝑒3

12𝜇
𝛻�̂�𝑅

𝐹

 
Equation 6-14 

Because 

−∫ 𝛻𝜓𝐼 ⋅
𝑒3

12𝜇
𝛻�̂�𝑅

𝐹

= −∫ 𝛻(𝜑𝑖 +∑𝑏𝐼𝑛𝜑𝑛
𝑛

) ⋅
𝑒3

12𝜇
𝛻�̂�𝑅

𝐹

= −∫ 𝛻𝜑𝑖 ⋅
𝑒3

12𝜇
𝛻�̂�𝑅

𝐹

 
Equation 6-15 

using Equation 6-5. 

The flux on a fracture to a node on an intersection calculated as described above is a linear 
combination of the residual pressures at the global nodes on the fracture.  The equations for the 
conservation of groundwater at a fracture intersection therefore give linear relations between the 
residual pressures at the global nodes on the intersecting fractures.  These equations, together with 
any boundary conditions on the fracture-network model provide the overall set of discretised 
equations for the residual pressures at the global nodes.  In ConnectFlow, these equations can be 
solved using either a direct solver or a preconditioned conjugate gradient method. 
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It is worth noting that the approach described above leads to the equations that would be obtained 
were the finite-element approach to be applied directly to all the fractures together, with the basis 
functions for a node on an intersection being taken to be defined on both intersecting fractures in 
the obvious way.  That is, on each fracture, the basis function would have the form of the basis 
function for the appropriate local node.  This result is almost trivial because the equation for the 
conservation of groundwater for a global node on the intersection would then just be the sum of the 
contributions to the finite-element equation for the basis functions for the corresponding local node 
on each fracture, which is exactly what is obtained for the corresponding overall basis function 
defined as above.  This is exactly the same as Equation 6-9.  Thus the approach is a very natural one. 

In the discussion above, the approach used in ConnectFlow has been presented for the simplest 
case in which global nodes are identical to local nodes on fracture intersections.  However, 
ConnectFlow allows considerable flexibility about the number and position of global nodes on 
intersections.  (This means that highly refined models can be used for accuracy or coarser models 
can be used in order to keep computational costs down, as appropriate.)  The flexibility about the 
global nodes complicates the analysis slightly. 

First, there may be fewer global nodes along an intersection than local nodes.  This can readily be 
handled by a minor extension of the approach previously described.  It is simply necessary to take 
the global basis functions to be the appropriate linear combinations of the global basis functions 
described above.  In fact 

𝛹𝐼(𝛼) =∑𝛹𝐼
𝑗

(𝛼𝑗)𝜓𝑗(𝛼) 
Equation 6-16 

This is illustrated in Figure 6-3. 

 
Figure 6-3: The relation of local and global basis functions on an intersection in a case in which there are fewer global nodes than local 
nodes on the intersection 

Second, it is possible that two (or more) fracture intersections may themselves intersect.  (Although 
the probability of more than two intersections intersecting is vanishingly small for the physical 
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fractures, it is quite possible that this may occur in the DFN model with fractures approximated to lie 
along element boundaries.)  Provided that there are global nodes at the ‘multiple intersection points’ 
where two (or more) fracture intersections, then the discussion above applies unchanged.  However, 
if global nodes are not present at multiple intersection points, then the residual pressure and the 
groundwater flux are effectively double counted at the multiple intersections, because there are 
separate contributions to the residual pressure (or flux) from each intersection.  In order to avoid this 
double counting, the global basis functions are modified by reducing the contributions from the local 
node associated with a multiple intersection point.  The contribution to each affected global basis 
function is divided by the number of fracture intersections crossing the local node, that is  

𝛹𝐼(𝛼) =∑
1

𝑁𝑗
𝛹𝐼

𝑗

(𝛼𝑗)𝜓𝑗(𝛼) 
Equation 6-17 

where 𝑁𝑗  is 1 if there is a global node at local node 𝑗, and the number of fracture intersections 
intersecting at node 𝑗 otherwise.  This is illustrated in Figure 6-4.  The approach introduces an 
approximation, which was tested during the development of the DFN module and found to be 
acceptable. 

The fluxes to the global nodes are calculated from  

𝑄𝐼 = −∫ 𝛻𝛹𝐼 ⋅
𝑒3

12𝜇
𝛻�̂�𝑅

𝐹

= −∑∫ 𝛻𝛹𝐼 ⋅
𝑒3

12𝜇
𝛻𝛹𝐽�̂�𝐽

𝑅

𝐹𝐽

 
Equation 6-18 

which is a straightforward extension of Equation 6-14.  These fluxes are used, for example, in the 
approximate particle tracking calculations.   



ConnectFlow Technical Summary 

© Amentum. All rights reserved. 73 
 

 
Figure 6-4: The global basis functions for a case in which fracture intersections intersect. (a) the basis functions for the global nodes (b) 
the construction of the basis functions on fracture intersections from the basis functions for local nodes 
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The calculation of steady-state groundwater flow is illustrated in Figure 6-5 and Figure 6-6.  Figure 
6-5 shows an example of the pressure distribution on the network scale for a network of 12,601 
random fractures. Figure 6-6 gives an example of the pressure distribution on the finite-element 
scale for a network of 8 known fractures. 

 

 
Figure 6-5: The pressure distribution on the network scale. Each fracture is coloured according to the mean pressure on the plane. Red 
indicates high pressure, blue low pressure. The flow domain is an annular region built from 12 hexahedra. Flow is from the external 
surface to the internal surface to model inflow to a tunnel. 
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Figure 6-6: The pressure distribution on the scale of the finite-elements for a network of 8 fractures. Red indicates high pressure, blue low 
pressure. 

6.4 Full Permeability Tensor (Upscaling) 
The approach adopted to the calculation of the full permeability tensor, that is, all six independent 
components, kxx, kyy, kzz, kxy, kyz, kzx for a specified volume, is as follows.  Consider a rectangular 
block of a continuum porous medium with an anisotropic permeability tensor with components kij.  
For a given head gradient with components Gi, the specific discharge would be 

𝑞𝑖 = −∑𝑘𝑖𝑗𝐺𝑗
𝑖

 Equation 6-19 

The fluxes through the faces of the block are given by 

𝑄𝛼 = 𝐴𝛼∑𝑛𝛼𝑖𝑞𝑖
𝑖

= 𝐴𝛼∑𝑛𝛼𝑖 𝑘𝑖𝑗𝐺𝑗 
Equation 6-20 

where nαi are the components of the normal to face α with area Aα. These fluxes vary in a simple way 
with the imposed head gradient. 

Now consider a similar block composed of fractures.  Using ConnectFlow, the fluxes through the 
faces of the block can be calculated for a specified head gradient imposed as a boundary condition 
on the block.  These fluxes will vary with the imposed head gradient. The variation is unlikely to be as 
simple as the variation of the fluxes through the faces of a block composed of an anisotropic 
continuum porous medium.  However, one can look for the best fit to the variation of the fluxes 
through the block composed of fractures in terms of the variation of the fluxes through an anisotropic 
continuum porous medium.  The corresponding permeability tensor provides, in an average sense, 
the effective permeability tensor for the block composed of fractures. 

In practice, rather than fitting to the variation of the fluxes through the faces of the block as 
continuous functions of the imposed head gradient, the fit is made to the fluxes for a modest number 
of directions of the imposed head gradient.  In the current implementation in ConnectFlow, the head 
gradients may be specified by the user, or their directions may be chosen automatically in the 
following manner, which is designed to avoid directional bias, as far as possible.  A number of 



ConnectFlow Technical Summary 

© Amentum. All rights reserved. 76 
 

randomly oriented regular icosahedra centred on the origin are chosen.  Then the directions of the 
head gradients are taken to be along the lines from the centre to the mid-points of the sides of each 
icosahedron.  (There are 15 such lines for each icosahedron.)  This gives a uniform coverage of 
direction. 

Thus the components of the effective permeability tensor are obtained by minimising  

𝑓 =∑(𝑞𝛽𝛼 + 𝐴𝛼∑𝑛𝛼𝑖𝑘𝑖𝑗𝐺𝛽𝑗
𝑖,𝑗

)

2

𝛽,𝛼

 

Equation 6-21 

where 𝑄𝛽𝛼is the flux through face 𝛼for imposed gradient 𝐺𝛽𝛼 . (Here 𝛽indexes the imposed head 
gradients.) 

This leads to the “normal equations” (see for example [Press et al., 1986])  

𝜕𝑓

𝜕𝑘𝑖𝑖
= 0 = 2∑(𝑄𝛽𝛼 + 𝐴𝛼∑𝑛𝛼𝑘𝑘𝑘𝑙𝐺𝛽𝑙

𝑘,𝑙

)

𝛽,𝛼

𝐴𝛼𝑛𝛼𝑖𝐺𝛽𝑖; 𝑖 = 1, 2, 3 
Equation 6-22 

 

𝜕𝑓

𝜕𝑘𝑖𝑖
= 0 = 2∑(𝑄𝛽𝛼 + 𝐴𝛼∑𝑛𝛼𝑘𝑘𝑘𝑙𝐺𝛽𝑙

𝑘,𝑙

) (

𝛽,𝛼

𝐴𝛼𝑛𝛼𝑖𝐺𝛽𝑗 + 𝐴𝛼𝑛𝛼𝑗𝐺𝛽𝑖); 

𝑖 < 𝑗 𝑎𝑛𝑑 𝑖 = 1, 2, 3 

Equation 6-23 

(It should be noted that only six components of the permeability tensor are independent, namely kxx, 
kyy, kzz, kxy = kyx, kyz  = kzy, kzx = kzx ) 

Equation 6-22 and Equation 6-23, which are a system of linear equations, are solved by Gaussian 
elimination.  The quantities 𝐴𝛼𝑛𝛼𝑖𝐺𝛽𝑖 and (𝐴𝛼𝑛𝛼𝑖𝐺𝛽𝑗 + 𝐴𝛼𝑛𝛼𝑗𝐺𝛽𝑖) are called the basis functions.  
The inverse of the matrix for the system is called the covariance matrix and is closely related to the 
uncertainties in the parameter estimates obtained by the least-squares fitting. 

6.5 Efficient Implementation 
It is important to make the effective permeability calculations as efficient as possible. 

In fact, the calculation of the full permeability tensor is implemented in such a way that its 
computational cost is little more than that of computing the flow through the block for a single set of 
boundary conditions. 

The reason for this is as follows.  The discretised flow equations for the network can be written in 
matrix notation as  

𝑨𝒙 = 𝒃 Equation 6-24 
where 
• 𝒙 is the vector of unknowns, that is the residual pressures (or effectively heads) at the internal 

nodes of the model; 
• 𝒃 is the right-hand side vector of specified residual pressures (heads) on the boundary. 

ConnectFlow uses a direct Gaussian algorithm to solve these equations.  The method is equivalent to 
making a decomposition of 𝑨 into the product 𝑳𝑼 of a lower triangular matrix 𝑳 and an upper 
triangular matrix 𝑼 followed by successively solving  

𝑳𝒚 = 𝒃 Equation 6-25 
 

𝑼𝒙 = 𝒚 Equation 6-26 
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The computationally expensive step in this procedure is the determination of the LU-decomposition.  
Relatively speaking, Equation 6-25 and Equation 6-26 are very cheap to solve.  Once the LU-
decomposition has been made, it is therefore possible to solve the matrix equations for a number of 
different right hand sides very cheaply. This is exactly what is required to calculate the flows for the 
different imposed head gradients.  The various gradients are defined by specifying the 
corresponding distribution of head around the boundary of the block.  In this way, a very efficient 
method for calculating the full effective permeability tensor is obtained. 

6.6 Calculation of Effective Permeabilities for Many Blocks 
One application of this facility is the calculation of effective permeabilities in a study of upscaling.  
Such studies require the calculation of the distribution and correlation structure of the effective 
permeabilities.  An option is therefore available to generate a realization of a fracture-network in a 
specified region, and then automatically calculate effective permeability tensors for each block in a 
subdivision of the region.  It is then possible to analyse the statistics of the data obtained using this 
option in order to estimate the correlation structure of the effective permeability. 

6.7 Effective Permeability of an Internal Block 
The facility to calculate the permeability for many blocks provides a very powerful tool.  However, the 
issue of boundary short-circuits needs to be considered.  As discussed above, the algorithm is based 
on calculating the flows through the block of interest for a number of different imposed head 
gradients, which are specified in terms of imposed heads on the boundaries of the block.  However, 
it is possible that there are one, or more, highly transmissive fractures within the block directly 
connecting an inlet face with an adjacent outlet face (see Figure 6-7) 

 

 
Figure 6-7:  Schematic of short circuits in a two-dimensional case. 
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Because of the imposed head boundary conditions there are large flows through such fractures.  
This leads to an estimate of the effective permeability that is biased towards high values. The 
problem arises because of the interaction of such short circuits with the imposed boundary 
conditions.  Consider the behaviour of the block in question in the context of the surrounding 
network.  It is unlikely that the imposed head would be present across such a short circuit.   

Rather, because of its high transmissivity, the head drop across the short circuit would be small, with 
most of the head drop being taken up by other fractures.  One limiting case, which is shown in Figure 
6-7 is that of a short circuit that is not connected beyond the block in question.  In the case shown in 
Figure 6-7, when the surrounding network is taken into account the head in the short circuit would 
actually be constant, and there would be no flow in the short circuit, whereas if the block was 
considered in isolation, the short circuit might well completely dominate the flows through the block 
and hence the calculated effective permeability. In order to address this problem, it is necessary to 
modify the procedure for calculation of the effective permeability tensor.  This modification 
introduces a “guard zone” around the block of interest.  This allows the effective permeability of the 
block to be calculated in the context of the surrounding network, so the effect of short circuits is 
restricted to the guard zone.  In practice, it is necessary to choose a guard zone of a sensible size, 
which depends on the distributions of the fracture properties. 

6.8 Transient Flow Modelling 
As the field experiments from which the data to generate fracture-networks are derived usually 
involve transient flows, a transient flow modelling capability has been developed in ConnectFlow. An 
approach consistent with the steady-state approach is adopted. This ensures that the code is 
applicable to the complex networks that the steady-state code is able to handle. The equation 
describing constant-density transient flow through a fracture-network is  

𝑆

𝜌𝑔

𝜕𝑃𝑅

𝜕𝑡
=
𝑒3

12𝜇
𝛻2𝑃𝑅 

Equation 6-27 

where S is the fracture storativity which is dependent both on fluid and rock compressibility. The 
choice of a suitable model for fracture storativity is important for an accurate transient flow model. 
Three models for fracture storativity are available in the DFN module:  

𝑆 = 𝜌𝑔𝐴𝑒 Equation 6-28 
 

𝑆 = 𝜌𝑔 [
1

𝑅𝐾𝑁
+ 𝑒𝐶𝑓] 

Equation 6-29 

 

𝑆 = 𝛼𝑇𝑏 Equation 6-30 
Here A, RKN, Cf, α and β are constants that can be specified by the user. 
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The fracture-network is discretised in the way described in section 3.2 and a backward difference is 
used to approximate the time derivative. The finite-element equation to be solved for the pressure 
values at the global flow nodes becomes  

∑(
𝑆

𝜌𝑔𝛥𝑡
∫𝛹𝐼𝛹𝐽
𝛺

𝑃𝐽
𝑅,𝑛+1 +

𝑒3

12𝜇
∫𝛻𝛹𝐼𝛻𝛹𝐽
𝛺

𝑃𝐽
𝑅,𝑛+1)

𝐽

=∑
𝑆

𝜌𝑔𝛥𝑡
𝐽

∫𝛹𝐼𝛹𝐽𝑃𝐽
𝑅.𝑛

𝛺

 
Equation 6-31 

This equation is solved for a fixed timestep 𝛥𝑡 to give 𝑃𝑅,𝑛 the residual pressure solution at time 𝑡 =
𝑛𝛥𝑡. The second term on the left-hand side of this equation is simply the flux term, 

∑𝐹𝐼𝐽𝑃𝐽
𝑛+1

𝐽

 Equation 6-32 

that appears in Equation 6-18, and the first term on the left-hand side of this equation will be 
referred to as the storativity term  

∑𝑆𝐼𝐽𝑃𝐽
𝑅,𝑛+1

𝐽

 Equation 6-33 

The second step of a transient groundwater flow calculation is analogous to that in the steady-state 
calculation. The contributions from the individual planes to the global matrix are calculated. As 
before, the contributions to the flux term from each plane are evaluated by solving the mass 
conservation equation on each plane subject to a number of different boundary conditions.  In 
addition, the contributions to the storage term are evaluated for each fracture plane. 

These contributions are then assembled into the global matrix, ready to start timestepping. In order 
to simplify generating the right-hand sides of Equation 6-31 for each timestep, two global matrices 
are assembled, one containing the flux term, 𝐹𝐼𝐽, and the other containing the storativity term, 𝑆𝐼𝐽. It 
is assumed that the boundary conditions are fixed with respect to time, and therefore can be 
imposed by deleting terms from the storativity matrix and changing the flux matrix in the same way 
as for the steady-state model. A boundary condition vector is constructed at this point. The two 
global matrices are added together, component by component, to form one global matrix. The 
resulting global matrix and the boundary condition vector are unchanged for all timesteps of the 
same size, since they depend on time only through the timestep size 𝛥𝑡. 

The third stage of the transient groundwater flow calculation is to solve the matrix equations for each 
timestep.  The right-hand side of Equation 6-31, for the first timestep, is evaluated by multiplying the 
storativity matrix by an initial solution which is prescribed by the user. This initial solution may be a 
constant pressure, a linearly varying pressure or an existing solution previously found by 
ConnectFlow. The contribution from the boundary conditions is added to this right-hand side and the 
matrix Equation 6-31 is solved using the same direct frontal solver as for a steady-state calculation to 
produce the pressure solution at the first timestep. This solution is used to evaluate the next right-
hand side and the timestepping loop is repeated producing a sequence of solutions Pn+1 which 
define the flow field at the (n+1)-th timestep. 

As with steady-state problems, this method allows quite coarse meshes to be used on very large 
systems. However more detailed refinement might be required for smaller networks, or near sources 
and sinks. To deal with this, the transient model permits optional local refinement for significant 
fractures. This option involves solving the transient mass conservation equation on the fracture and 
then adding this contribution to the refined matrix. At each timestep, the local pressure solution is 
saved on the finite-element mesh of the refined plane and this solution is used to calculate the next 
solution to the transient mass conservation equation on the refined plane. 
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6.9 Engineered Features 
Close to a point where an engineered feature intersects a fracture, the pressure field behaves like 
that within a parallel plane having a single sink: 

𝑃𝑅 = 𝑃𝑤
12𝜇𝑄

2𝜋𝑒3
𝑙𝑛 (

𝑟

𝑟𝑤
) 

Equation 6-34 

where 𝑃𝑤is the wall pressure, r is the distance from the engineered feature, 𝑟𝑤 is the engineered 
feature radius and Q is the volumetric flow rate from the engineered feature into the fracture. 

This logarithmic behaviour is poorly approximated by a regular linear finite-element discretisation, 
and so a correction is applied to the residual pressure calculated by the finite-element method at the 
engineered feature, 𝑃𝑃𝐸, using the analytical solution in Equation 6-34, to obtain the wall pressure, 
𝑃𝑤  

𝑃𝑤 = 𝑃𝑃𝐸 +
𝑄

𝛤
 

Equation 6-35 

where 𝛤is a productivity index, which is dependent on the size of the finite element mesh, the 
feature radius and the transmissivity of the fracture. Although this model is based on a steady-state 
analytical solution, tests have shown that the correction factor to be reasonable when modelling 
transient flow. 

6.10 Two-Dimensional Networks 
For formations with very high aspect ratios, a simplification to a two-dimensional network may be 
justified. Alternatively when approaches to complex physics are being developed it may be 
necessary to simplify the geometry by approximating a three-dimensional network by a two-
dimensional one.  A two-dimensional version of the DFN module was developed that uses much of 
the existing three-dimensional code. The flow model and the approach used to solve the equations 
are analogous to the three-dimensional version. The network can be considered as a slice through a 
three-dimensional network in the x-z coordinate plane, with constant flow in the y-direction, and 
mass conservation governing flow through the fracture. The fractures are represented as straight-
line segments, and are defined by an orientation angle, a length and an effective aperture. As in 
three-dimensional simulations, the parameters describing each fracture may be sampled from 
statistical distributions. A more physical way of generating a two-dimensional network, and the one 
usually adopted, is to generate a three-dimensional fracture-network and to map traces onto a 
plane. 

The flow solution in the two-dimensions is less complicated than in three-dimensions. The flow field 
is discretised by assigning one global flow node to each intersection between fractures. Linear basis 
functions, which are zero outside the fractures, are defined at each node J by  

𝛹𝐽 = 1 at node J Equation 6-36 
 

𝛹𝐽 = 0 at node I ≠ J Equation 6-37 
and are defined by linear interpolation along fractures between nodes.  The contributions to the 
matrix equations for each plane are calculated directly without needing to calculate the response 
functions on each plane. Boundary conditions are imposed and the resulting matrix equation is 
solved using the direct frontal solver. 
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6.11 Modelling the Effect of Stress on a Fracture Network 
The DFN module is designed to deal with complex fracture-networks, and as a consequence it is 
only practical to incorporate relatively simple models for the effect of stress on flow (hydro-
mechanical coupling). The effect on the flow of a change in stress caused by disturbing the 
surrounding fracture-network, for example by drilling a repository tunnel, can be calculated. The 
network is assumed initially to be in hydro-mechanical equilibrium, with the apertures of the 
fractures being those that apply to the in-situ network under the specified equilibrium stress field.  
ConnectFlow does not calculate the stress field directly. An analytical solution may be used to 
determine the changed stress field, or the results of field experiments can be used to obtain an 
empirical specification of the changed stress field. Thus the normal stress acting at any point on a 
fracture may be calculated. 

Having calculated the change in normal stress, a stress-aperture coupling is used to change the 
fracture aperture. In three-dimensions, the change in aperture for each finite-element is computed 
from the value of the normal stress at the centre of the finite-element. 

In two-dimensions, the change in normal stress acting on the fracture is calculated at the centre 
point of each section of fracture between intersections. 

There are several stress-aperture couplings available. Three that have been used in DFN modelling 
[Wilcock , 1996] are  

𝑇 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 Equation 6-38 
 

𝑇

𝑇0
= (

𝜎𝑛
𝜎𝑛0

)

−𝛼

 
Equation 6-39 

 

𝑒 = 𝑚𝑎𝑥( 𝑒0 − (
𝜎𝑛 − 𝜎𝑛0
𝑅𝐾𝑁

) , 𝑒𝑚𝑖𝑛) 
Equation 6-40 

In the first coupling, the transmissivity, T, of each fracture is assumed to be unchanged by the 
excavation of the tunnel. The DFN module directly converts transmissivities into apertures using the 
parallel-plate law, as defined by Equation 6-3, and so the apertures remain constant. The second 
coupling is a compliance law relating the change in fracture transmissivity, T, to changes in normal 
stress, 𝜎𝑛through a power law with exponent 𝛼. The value of 𝛼is obtained from laboratory tests 
carried out on the rock. For fractured rock 𝛼typically has values between ~0.1 and ~1.0.  The third 
law relates the change in aperture, 𝑒 − 𝑒0 directly to the change in stress and the fracture normal 
stiffness, RKN. It is necessary to define a minimum aperture, 𝑒𝑚𝑖𝑛  to ensure that all apertures 
remain positive, and to reflect the physical reality that fractures can only be compressed so far. 
Again, the results of laboratory tests are used to determine the value of RKN. 

6.12 Tracer Transport 
The tracer transport option in the DFN module is designed to calculate the migration and dispersal 
of tracer through a discrete fracture-network. Within the groundwater, it is assumed that tracer 
transport is dominated by advection, so that molecular diffusion can be ignored, and the major 
cause of dispersion is due to the existence of a number of different paths through the fracture 
network. It is also assumed that the fracture apertures are small enough that the tracer diffuses 
quickly across the aperture. 

The transport calculations are based upon a particle-tracking algorithm. The problem is split up into 
the calculation of single fracture responses followed by the calculation of the transport of a particle 
swarm through the network. For each fracture plane, a representative number of pathlines between 
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the intersections on the plane are calculated. Intersections are discretised by transport nodes and 
pathlines are calculated from each transport node. There are two algorithms available for calculating 
these pathlines, ‘exact particle tracking’ (with standard and mass-conserving methods) and 
‘approximate particle tracking’. Each algorithm is described in the following sections. 

6.12.1 Exact Particle Tracking (Standard Method) 
For each fracture, the flow field is discretised in terms of linear triangular finite-elements. The flow is 
determined by the pressure field, and since the pressure varies linearly over each triangle, the 
groundwater velocity,  

𝝂 =
𝒒

𝑒
= −

𝑒2

12𝜇
(∇PR − (𝜌 − 𝜌0)𝒈) 

Equation 6-41 

is constant on each element. The pathlines are calculated on each fracture by stepping the path 
across the mesh, one element at a time. On reaching a fracture intersection, the path is complete. 
Once the pathlines from the transport nodes on each fracture plane have been calculated, the 
possible connections for that node are determined. A list of possible destinations, travel-times, 
distances and relative probabilities for a particle leaving each node are calculated. In this way, a 
library of paths is created for every transport node in the network. The model relies on the calculation 
of a very accurate flow solution. If a low accuracy solution is used, then problems with local flow sinks 
on fractures may occur, resulting in the loss of a significant fraction of the particle swarm. 

6.12.2 Exact Particle Tracking (Mass-Conserving Method) 
The standard method of exact particle tracking using the finite-elements does not guarantee 
conservation of mass in the flows between elements. Effectively there are sinks or sources at finite-
element boundaries and nodes.  This can cause problems for particle tracking calculations because 
particles can become ‘trapped’ or ‘lost’ at the sinks. However, the mass-conserving method 
(introduced with ConnectFlow version 9.3 as the default) does conserve mass between elements. It 
does this by using a method proposed by Cordes and Kinzelbach [Cordes et al., 1992]. This method 
takes each DFN fracture triangular finite-element and sub-divides it into four sub-triangles. The 
velocity within each sub-triangle is then calculated in such a way as to conserve mass between 
elements and sub-triangles. The set of sub-triangles around each finite-element node is termed a 
patch. The velocity calculations are carried out patch by patch, with the calculations for each patch 
independent of those of the others. The velocities for the middle sub-triangles that are not part of any 
patch can be calculated from the finite-element pressures. This keeps the scale of the calculations 
small and velocities only need to be calculated for those patches or middle sub-triangles that 
particles enter. 

Figure 6-8 shows the sub-triangle patch for a non-boundary, non-intersection node. The black lines 
are the element edges and the red lines are the sub-triangle edges. The purple arrows are the fluxes 
across the sub-triangle edges and the green arrows are the velocities for the sub-triangles. 
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Figure 6-8: A sub-triangle patch for a non-boundary, non-intersection node. 

The fluxes entering or leaving the patch (Q1 to Q4) can be calculated directly from the finite-element 
pressures. The fluxes through the edges connected to the node can be calculated by applying the 
following constraints: 

1. There is no net flux into or out of a sub-triangle, e.g. Q5 = Q1 + Q8; 

2. The fluxes entering or leaving the patch sum to zero, i.e. Q1 + Q2 + Q3 + Q4 = 0; 

3. The integral of the head gradient around the node is zero (the irrotationality constraint). 

The velocity in each sub-triangle can be calculated directly from the fluxes entering or leaving it. 
Note that for the middle sub-triangles (those not connected to an element node), the fluxes, and 
hence velocities, can be calculated directly from the finite-element pressures. 

Figure 6-9 shows a boundary node on the edge of a DFN fracture. There is no flow across the 
boundary and so fluxes Q5 and Q9 will be zero. Fluxes Q1 to Q4 can be calculated from the finite-
element pressures.  Since flux is preserved between sub-triangles, this enables fluxes Q6 to Q8 to be 
calculated and hence the sub-triangle velocities. 
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Figure 6-9: A sub-triangle patch for a boundary node. Figure 6-10 shows a node on a fracture intersection, with the intersection edges 
highlighted in blue.  

Because flow can be entering or leaving the fracture through the intersection then constraints b and 
c above are no longer true. In this case, the patch is split into segments, with each segment being 
the sub-triangles between a pair of intersection edges. Then each segment is treated separately, 
since the fluxes on each side of the intersection are not necessarily equal, e.g. Q7 may not equal Q8. 
For each segment, the sum of the fluxes entering or leaving the patch through sub-triangle edges, 
e.g. Q1 + Q4, must equal the sum of the fluxes entering or leaving the intersection, e.g.  Q5 + Q7.  
The fluxes entering the patch through the sub-triangle edges can be calculated from the finite-
element pressures and it is possible to assign this flux to the intersection edges. This enables the 
remaining fluxes, and hence the velocities, to be calculated. A similar approach is taken for very 
short, i.e. point, intersections and for boreholes, but in this case the flux is assigned to the node itself 
and the radial flow component is taken into account. 
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Figure 6-10: A sub-triangle patch for an intersection node. 

Once the velocities have been calculated, the particle paths between the transport nodes can be 
calculated using a stepping method, where each step is between a sub-triangle edge. In the case of 
a point intersection or borehole node, a radial flow component is present in the sub-triangles around 
the node, which requires a time-stepping approach within those sub-triangles. Information on the 
paths is stored in the same way as for the standard method. 

6.12.3 Approximate Particle Tracking 
The DFN module is able to create a database that records the net flux between all the intersections 
for a flow solution. This network of flux connections links the centre of every intersection on a given 
fracture with every other intersection centre on the fracture. A transport option has been developed 
that is based on this flux database in which particles are transported between intersections. This is a 
more robust method than exact particle tracking as it does not need a highly accurate flow solution, 
just a good flow balance at the network intersections.  It is also more computationally efficient. One 
disadvantage is that this model cannot accurately model dispersion on a single fracture. However, 
where dispersion is dominated by the different paths through the network rather than dispersion on 
an individual fracture plane, these inaccuracies may be small and so this method is most 
appropriate for large networks. The accuracy of the calculation for transport across any fracture can 
be improved by tessellating fractures which effectively increases the discretisation. Figure 6-11 
shows 30 particle tracks based on approximate particles tracks for a simple random network. The 
paths clearly demonstrate the heterogeneities in flow due to variations in network connectivity and 
fracture transmissivity. 
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Figure 6-11: An example of a particle tracking calculation for 30 particles starting at the same injection borehole interval (located centrally 
and vertical) and dispersing outward toward the vertical boundaries. Flow is radially outward from the injection borehole. 

The next step in the transport calculation consists of following a large swarm of particles across the 
network. Particles can be started on any surface of the fracture-network region where there is an 
inflow or from any number of engineered features. Particles are tracked through the network from 
node to node, building up the path taken by each of the particles using the information calculated in 
the first step. Figure 6-12 is an example of a breakthrough curve for particle tracking across a simple 
cuboid region. 
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Figure 6-12: An example of a breakthrough curve based on 1000 particle tracks through a small random network. The jagged line is the 
cumulative curve based on the particle tracks. The smooth curve is a fit to the data based on a two-parameter advection-dispersion curve. 

6.13 Coupled Groundwater Flow and Salt Transport 
The DFN module includes an option for modelling coupled groundwater flow and salt transport. Both 
steady-state and transient modelling can be undertaken. 

The equations characterising transient coupled groundwater flow and salt transport in an individual 
fracture are: 

𝜕(𝑒𝑡𝜌)

𝜕𝑡
+ ∇ ∙ (𝜌�⃗�) = 0 

Equation 6-42 

𝜕(𝑒𝑡𝜌𝑐)

𝜕𝑡
+ ∇ ∙ (𝜌�⃗�𝑐) = ∇ ∙ (𝑒𝑡𝜌𝐷 ∙ ∇𝑐) 

Equation 6-43 
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�⃗� =
𝑒3

12𝜇
(∇𝑃𝑅 − (𝜌 − 𝜌0)𝑔𝑓⃗⃗ ⃗⃗⃗) 

Equation 6-44 

1

𝜌
=

1 − 𝑐

𝜌0 (1 + 𝛼𝑓(𝑃𝑇 − 𝑃𝑇0))
+

𝑐

𝜌𝑠 (1 + 𝛼𝑠(𝑃𝑇 − 𝑃𝑇0))
 

Equation 6-45 

 The other variables referred to here are: 
• 𝑒 is the effective hydraulic aperture of a fracture, which may vary within the fracture and between 

fractures; 
• 𝑒𝑡 is the transport aperture of a fracture, i.e. the effective aperture of a fracture accessible to 

mobile water, which may vary within the fracture and between fractures; 
• 𝑐 is the fraction of the saline water and (1 − 𝑐) is the fraction of fresh water.  
• 𝜌 is fluid density; 
• 𝜌𝑠 is the saline fluid density; 𝜌0 is the reference fluid (fresh water) density; 
• 𝛼𝑠is the compressibility of saline water;  𝛼𝑓is the compressibility of fresh water;   
• 𝑃𝑇 is the local total pressure; 
• 𝑃𝑇0 is the reference pressure; 
• 𝜇 is fluid viscosity (constant); 
• 𝑃𝑅 is the local residual pressure:  𝑃𝑅 = 𝑃𝑇 − 𝑃𝑇0 + 𝜌0𝑔(𝑧 − 𝑧0), where g is the magnitude of 

gravitational acceleration, z is the elevation and z0 is the reference elevation. 
• �⃗� is Darcy flux; 
• 𝑡 is time; 
• 𝐷 is the dispersion tensor.  This includes contributions from diffusion and from hydrodynamic 

dispersion.  The latter is usually taken to be proportional to   with different values along and 
perpendicular to the flow; 

• ∇ is the two-dimensional gradient operator within the fracture; 
• 𝑔𝑓⃗⃗ ⃗⃗⃗ is the acceleration due to gravity in the plane of the fracture. 

The equations for the overall network comprise these equations for each fracture, together with the 
conditions at a fracture intersection that the pressure and salinity are continuous across the 
intersection and the rates of flow of water and salt per unit length out of one fracture are equal to the 
rates of flow of water and salt per unit length into the other fracture. 

Transients are handled by expressing the time derivatives as finite differences.  Generally, fully 
implicit differences are used in ConnectFlow. 

The equations are non-linear. The straightforward and most accurate way to generalise the 
approach described in section 6.3 to deal with this would be simply to use an iterative approach 
such as Newton-Raphson iterations to handle the non-linearity for both the global nodes and for the 
local nodes within fractures. At each iteration, updates for the residual pressure and the salinity at 
the global nodes would be determined. This would be done by solving the equivalents of Equation 
6-9. This would take into account the non-linearity. Then updated versions of the global basis 
functions on each element would be determined by solving the equivalents of Equation 6-5 and 
Equation 6-6. This would take into account the non-linearity of the equations for each fracture. This 
would be repeated until satisfactory convergence was achieved. 

However, this approach would be very costly computationally. The calculation of the global basis 
functions for each time step would cost about two orders of magnitude more than the calculation of 
the global basis functions for the case of steady-state constant density groundwater flow. (Twice as 
many basis functions would have to be calculated, twice as many cases would have to be considered 
in the determination of the global basis functions, the matrices in the calculation of each basis 
function would be twice as large, so the calculation for each basis function might cost about eight 
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times as much and the calculations would have to be done for say five Newton-Raphson iterations 
for each time step.) Further, the calculation of the global basis functions would have to be repeated 
for each timestep. 

Therefore an approximate approach is adopted that is much less expensive computationally. The 
basic idea of the approach is as follows. The global basis functions derived for the case of steady-
state constant-density groundwater flow effectively provide a set of basis functions that can be used 
directly in the Galerkin approach for the calculation of the residual pressure at the global nodes. The 
key point is that for steady-state constant-density groundwater flow, the discretised equations for the 
residual pressure at the global nodes can be expressed in terms only of the global basis functions 
without directly involving the local basis functions (see Equation 6-8). In the approximate approach, 
the salinity is also represented as a linear combination of these global basis functions. 

Thus 

�̂�𝑅 =∑𝑃𝐼
𝑅

𝐼

𝛹𝐼 
Equation 6-46 

 

�̂�𝑅 =∑𝑐𝐼
𝑅

𝐼

𝛹𝐼 
Equation 6-47 

The discretised equations for coupled flow and transport of salinity are then 

∑∫ 𝛹𝐼
𝜕(𝑒𝜌)

𝜕𝑡𝐹𝐹

+∑∫ 𝛻𝛹𝐼 ⋅
𝑒3

12𝜇
(𝛻�̂�𝑅 − (𝜌 − 𝜌0)𝒈𝑓)

𝐹𝐹

= 0 
Equation 6-48 

 

∑∫𝛹𝐼
𝜕(𝑒𝜌�̂�)

𝜕𝑡𝐹𝐹

+∑∫𝛻𝛹𝐼 ⋅ (�̂�𝜌�̂� + 𝑒𝜌𝐷𝛻�̂�)
𝐹𝐹

= 0 
Equation 6-49 

Together with the boundary conditions on the overall boundary of the network. 

The key benefit of this approach is that, as indicated, it is much less expensive computationally than 
the straightforward approach. The approach involves an approximation. Effectively the variation of 
salinity within a fracture is represented using functions with a small number of degrees of freedom 
(the number of global nodes), whereas in the straightforward approach the variation of salinity would 
be represented using functions with a much larger number of degrees of freedom (the number of 
local nodes).  However, in many cases, the variation of salinity over individual fractures may be 
relatively small, and in such cases the approximate method is likely to provide a good approximation.  
If some fractures are sufficiently large that the salinity varies significantly over the fractures then the 
fractures can be tessellated, so that the variation over each tessellate is relatively small. 

Figure 6-13 and Figure 6-14 show the distributions of residual pressure and salinity calculated for a 
steady-state case (a variant of the so-called Henry test case [Simpson et al., 2004]). The results are 
physically reasonable and in reasonable accord with the results for the Henry test case. 
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Figure 6-13: An example of the distribution of residual pressure for a calculation of coupled groundwater flow and salt transport. 
(Unconnected fractures are coloured grey.) 

 

Figure 6-14: An example of the distribution of salinity for a calculation of coupled groundwater flow and salt transport. (Unconnected 
fractures are coloured grey.) 
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6.14 Multi-Component Solute Transport 

6.14.1 Background 
The previous sections describe the DFN functionality of ConnectFlow with regards to a single salt 
species (coupled with the pressure calculation via the density). This section describes the 
simultaneous transport of multiple solute components, fully coupled with the pressure calculation. 
This facility allows the chemical composition of the groundwater to be explicitly modelled as a 
function of time which is highly relevant to the overall performance of geological disposal concepts.  
It also enables the calculation of chemical reactions within both fractures and the rock matrix, which 
will be described in more detail in a later section.   

Concentrations of salt may be described in one of three different ways within ConnectFlow: 

1) As a mass fraction c (also known as the salinity or mass concentration) of a chemical species 
i which is simply given by the mass of the species Mi divided by the total mass of water Mwat 

and all the m chemical species Mj.  

𝑐𝑖 =
𝑀𝑖

𝑀𝑤𝑎𝑡 + ∑ 𝑀𝑗𝑗=1,𝑚
 

2) As a volume concentration C of a chemical species i which is simply given by the mass of the 
species Mi divided by the volume of the solution.  

𝐶𝑖 =
𝑀𝑖
𝑉

 

The fluid density ρ of the solution can be used to convert to a mass fraction if required.  

3) Using a set of defined compositions of chemical species, known as reference waters.  In this 
case a set of n reference waters is specified, each of which has a fixed composition of m 
different chemical species.  The mass fraction of an individual chemical species i in a 
mixture of reference waters is given by the fraction of each reference water cw multiplied by 
the mass fraction of species i within that reference water ci,w.  

𝑐𝑖 = ∑ 𝑐𝑤𝑐𝑖,𝑤 =

𝑤=1,𝑛

 ∑ (
𝑐𝑤𝑀𝑖,𝑤

𝑀𝑤𝑎𝑡 + ∑ 𝑀𝑗,𝑤𝑗=1,𝑚
)

𝑤=1,𝑛

 

ConnectFlow calculates the fraction of each reference water and then the concentrations of the 
components are inferred from the above equation.  Note that the fraction of each reference water 
varies between zero and one and the total fraction of all reference waters sums to one.  

∑ 𝑐𝑤 = 1

𝑤=1,𝑛

 Equation 6-50 

Reference waters are beneficial when groundwater composition can be inferred from mixtures of a 
small number of waters of identifiable origins, for example glacial melt water, meteoric water or sea 
water, and when the water sources have a larger number of dissolved salt species (i.e. when m>n).  
In that case it is more efficient to transport the n reference waters rather than the m chemical 
species and save computational time.  If there are no clearly defined reference waters in the system 
or if hydrogeochemical calculations are required then reference waters are not appropriate and the 
concentrations of each solute must be individually calculated. 
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6.14.2 Mathematical Representation of Multi-Component Solute Transport in DFN 
The equations of single component solute transport are extended to transport 𝑛 reference waters in 
the following manner.  First, Equation 6-43 is used to calculate the fraction 𝑐𝑤 of 𝑛 − 1 reference 
waters, this equation becomes,  

𝜕(𝑒𝑡𝜌𝑐𝑤)

𝜕𝑡
+ ∇ ∙ (𝜌�⃗�𝑐𝑤) = ∇ ∙ (𝑒𝑡𝜌𝐷 ∙ ∇𝑐𝑤) 

Equation 6-51 

Next, the concentration of the remaining reference water is then inferred from Equation 6-50.  When 
transporting mass-fractions of individual solutes, rather than reference waters, the transport 
equations have the same form as Equation 6-51.  However, in this instance all the 𝑛 solutes must be 
calculated using this equation rather than calculating 𝑛 − 1. 

Finally, the manner in which the density and viscosity are calculated is significantly different 
between the single-component solute transport algorithm and multiple component salt transport.  In 
the former case, the density is calculated using Equation 6-45 and the viscosity is assumed 
constant.  In the latter case, the density and viscosity are calculated according to an empirical 
method described by Kestin et al (1981).  This method calculates the density and viscosity 
according to the total mass of dissolved solids of all species as well as the pressure and the 
temperature (a fixed temperature distribution can be specified at the start of the calculation). The 
expression was originally derived using NaCl but it is considered a reasonable approximation for 
multiple salt species.  This mirrors the approach used for ConnectFlow CPM calculations.  The rock 
matrix diffusion algorithm has also been extended to work for an arbitrary number of chemical 
species.  

Transients are typically calculated using a fully implicit scheme to avoid unphysical oscillations, 
although a Crank-Nicholson scheme is also available.  Where steady state calculations are 
performed the derivatives with respect to t are zero. 

There are some limitations to the approach, for example heat transport and unsaturated 
groundwater flow are not considered.  Additionally, the dispersion lengths and intrinsic diffusion 
coefficients are assumed to be the same for all species (although they can vary depending on the 
host rock).  

6.14.3 Implementation of Multi-Component Solute Transport in DFN 
While it is possible to calculate the pressure field and all the concentrations for multi-component 
solute transport using standard Newton-Raphson iterations, in practice this is likely to prove 
computationally expensive.  This is particularly true given a large number of component variables.  
To mitigate these performance issues, a sequential iteration algorithm has been implemented in the 
DFN case. The effectiveness of this approach has previously been demonstrated in ConnectFlow 
CPM calculations. 

In sequential iteration, the algorithm iterates through a list of variables, calculating each as though it 
were independent of all the others.  For each variable (or subset of variables), it will solve the relevant 
equations while holding all other variables constant (in time).  Typically this means solving for the 
pressure assuming a static reference water composition and then solving for the concentration of 
each reference water assuming a static pressure field.  Once all the variables have been updated, a 
convergence check is applied to determine the relative change of all variables. If there is a significant 
change then the variables are updated in the same sequence repeatedly until the criterion is met. 
This repetition of the sequence is known as “outer iteration”.  Additionally an automatic time-
stepping scheme can be used to reduce the time-step and repeat a given time-step if the criterion is 
not met once all the outer iterations have been completed in a transient calculation.  
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While a coupled solve typically has two levels of iteration (Newton-Raphson iteration and iterative 
linear solve), sequential iteration has up to four levels (Outer iteration, sequential iteration over the 
pressure and reference water variables, Newton-Raphson iteration and linear iteration).  Figure 6-15 
provides an example for three reference waters.  

The advantage of using sequential iteration is that each linear equation solve is more tractable and 
requires fewer memory resources from the computer.  Sequential iteration allows a solution to be 
found without these memory constraints.  Additionally, the efficient and parallelisable GMRES-AMG 
linear solver can be used for single variable solves whereas the slower and sequential GMRES-ILU 
linear solver typically has to be used for multi-variable solves.  This provides a significant extra 
benefit when using sequential iteration.   

In the sequential iteration algorithm, certain variables may be updated without a full finite element 
calculation.  For example, Equation 6-50 states that the fractions of reference waters must add to 
one. Thus if all reference waters except one have been calculated, the last is trivially inferred.  
Density and viscosity, where they are used as variables, may also be calculated algebraically as part 
of the sequence, based on the components present in the water at a given location, using the 
method described in Kestin et al (1981). 

Where possible, an effort has been made to ensure that the DFN implementation is similar to the 
CPM implementation of the same functionality in ConnectFlow.  This allows easy transfer of 
equivalent concepts between models with different kinds of rock.  For example, in CPM multi-
component solute transport a temperature variable is always specified, even when heat transport 
has not been specified.  In the same way, the temperature variable is always included in DFN multi-
component solute transport.  A static but spatially varying temperature distribution may therefore be 
applied and is taken into account in density and viscosity calculations, however, heat transport 
calculations are not available in DFN models at this time. 
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Figure 6-15: Comparison of Standard Iteration (top) with Sequential Iteration (bottom) for a three reference water calculation. Note that 
the Sequential Iteration algorithm has up to four levels of iteration (for each time-step): outer iteration, iteration over variables, Newton-
Raphson iteration (required if one of the variable solves is non-linear) and finally the iterations of the linear solver (GMRES-ILU or GMRES-
AMG).  The concentration of the third reference water is implied from other two reference waters in both cases. 

6.15 Rock Matrix Diffusion in a DFN Model 

6.15.1 Background 
Rock matrix diffusion (RMD) is a process whereby solutes in water flowing through fractures in rock 
diffuse into less mobile water in the adjoining rock matrix under a concentration gradient 
(Neretnieks, 1980). This diffusion has the effect of retarding transport of solutes through the 
fractures. Because there may be a significant amount of pore surface area in the rock matrix, the 
rock matrix is also a significant site for chemical reactions. 

Two methods are included in ConnectFlow for calculating RMD in continuous porous media (CPM). 
The first is the analytic method introduced by Hoch and Jackson (2004), and the second is the finite 
volume method introduced by Joyce et al. (2014a).  Only the finite volume method has been 
implemented within the DFN since this can be used when chemical reactions are occurring.  

6.15.2 Mathematical Representation of RMD in a DFN 
The equations for the transport of saline water in a CPM affected by rock matrix diffusion are given in 
Equation 4-3 and Equation 4-4.  

For a DFN model, the effective aperture of a fracture accessible to mobile water is characterised by 
the transport aperture et and the available volume for matrix diffusion is characterised by the size of 
the intervening matrix blocks between fractures, sb. The equivalence relationships with the CPM 
parameters are: 

𝜙𝑓 =
𝑒𝑡
𝑠𝑏
=
𝑒𝑡𝜎

2
  Equation 6-52 

Time-step Loop 
Newton-Raphson Loop  

Assemble flow and transport equations 
GMRES-ILU solve for pressure + reference 

waters 1 and 2 

End Newton-Raphson Loop 

Reference water 3 implied 
End Time-step loop 

Time-step Loop 
Outer iteration loop 

Newton-Raphson Loop  
Assemble flow equations 

GMRES-AMG solve for pressure 
End Newton-Raphson Loop 
Assemble transport equation 1 

GMRES-AMG solve for reference water 1 
Assemble transport equation 2 

GMRES-AMG solve for reference water 2 
 Reference water 3 implied 
End Outer iteration Loop 

End Time-step loop 
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Substituting for 𝜙𝑓 and 𝜎 into Equation 4-3, and converting Darcy flux vector, �⃗�, to a flow-rate per 
unit length vector, �⃗⃗� = 𝑠𝑏𝑞,⃗⃗⃗ ⃗ integrated across the fracture aperture (i.e. transmissivity times head 
gradient vector), the transport equation for the DFN is obtained: 

𝜕(𝑒𝑡𝜌𝑐)

𝜕𝑡
+ 𝛻 ∙ (𝜌�⃗⃗�𝑐) = 𝛻 ∙ (𝑒𝑡𝜌𝐷 ∙ 𝛻𝑐) + 2𝜌𝐷𝑖

𝜕𝑐′

𝜕𝑤
|
𝑤=0

 
Equation 6-53 

𝛼
𝜕(𝜌𝑐′)

𝜕𝑡
=

𝜕

𝜕𝑤
(𝜌𝐷𝑖

𝜕𝑐′

𝜕𝑤
) 

Equation 6-54 

The penetration depth into the matrix is bounded to half the matrix block size (𝑤 < 𝑠𝑏/2). This is 
because the solute diffusion fronts typically propagate through a matrix block from both sides so that 
the effective penetration depth for each fracture is halved.  

The equations above are appropriate for transport of a single solute but they generalise easily to the 
multi-solute implementation that is available in ConnectFlow. 

6.15.3 Implementation of RMD in a DFN 
The finite volume method employed for a DFN is identical to that for the CPM as stated in Equation 
4-32, except for a factor of 𝜎/2. Hence, for a DFN model, ConnectFlow reuses much of the 
algorithms that already exist for a CPM model. The most important differences in implementation 
arise from the fact that in a CPM model the equations are applied for each finite-element in the grid, 
while in a DFN model the equations are applied for each sub-fracture. Larger fractures and 
deformation zones can be tessellated into sub-fractures giving greater spatial resolution for the 
transfer between fracture and matrix as a solute mixing front moves through the network.  

The following new parameters exist in the DFN in order to represent RMD: 
4) An indication as to whether RMD is to be used or not; 
5) The total diffusion length into the matrix 𝑤𝑚𝑎𝑥 or the length of each finite volume cell, 𝑤𝑖; 
6) The number of finite volume cells, 𝑛𝑓𝑣; 
7) The intrinsic diffusion coefficient, 𝐷𝑖; 
8) The matrix porosity, 𝛼. 

It is important to note the distinction between the matrix block size, sb, and the maximum diffusion 
length into the matrix, 𝑤𝑚𝑎𝑥. The matrix block size is the distance to the next fracture. The diffusion 
length is the distance that is accessible for RMD, which is typically half the matrix block size since 
the adjacent fracture will affect the other half of the matrix block.  

The parameters 𝐷𝑖, 𝑤𝑚𝑎𝑥 and 𝛼 can be defined on a fracture-by-fracture basis for deterministic 
fractures and by fracture set for stochastically-generated fractures. The number of finite volume 
cells is the same for all fractures in a model and their sizes are the same for every fracture in a set. 
This contrasts with CPM modelling where the equivalent parameters are defined by rock type.  

Alternatively, the user can choose to not specify 𝑤𝑚𝑎𝑥 and allow ConnectFlow to automatically 
calculate it using the actual distances to neighbouring fractures.  
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The following consistency checks are made to ensure ∑ 𝑤𝑖
𝑛𝑓𝑣
𝑖=1

= 𝑤𝑚𝑎𝑥 :  

9) If ∑ 𝑤𝑖
𝑛𝑓𝑣
𝑖=1

< 𝑤𝑚𝑎𝑥 then 𝑤𝑛𝑓𝑣 (the last block) is increased to ensure the equality. 

10) If ∑ 𝑤𝑖
𝑛𝑓𝑣
𝑖=1

> 𝑤𝑚𝑎𝑥 and 𝑤𝑚𝑎𝑥 is chosen by the user (rather than automatically) then 𝑤𝑚𝑎𝑥 is 
increased to ensure the equality. 

11) If ∑ 𝑤𝑖
𝑛𝑓𝑣
𝑖=1

> 𝑤𝑚𝑎𝑥 and 𝑤𝑚𝑎𝑥 is determined automatically then the number and/or length of 
the 𝑤𝑖 are reduced to ensure the equality 

In addition, it is necessary to be able to specify the initial concentration of solute in the matrix. This 
can either be specified as a constant or linear variation across the model or the concentration in the 
matrix can be set equal to that in the fracture. 

6.16 Reactive Transport in DFN Models 

6.16.1 Introduction 
Reactive transport has been implemented for DFN models using the same interface to PHREEQC as 
CPM models (see section 4.7).  PHREEQC is an extensively used geochemical software product and 
is capable of simulating a wide range of chemical reactions, including equilibration of aqueous 
solutions with minerals, ion exchanger materials, surface complexes, solid solutions and gases. It 
can also simulate kinetic non-equilibrium reactions. Future upgrades to PHREEQC and/or the 
interface will become available for use by both DFN and CPM calculations.   

The implementation in the DFN is very similar to the existing CPM implementation: the transport 
calculation is performed at the start of each timestep and upon completion the reactive transport at 
each ConnectFlow solution node is calculated using the iPHREEQC module.  Note that in DFN 
calculations the solution nodes are defined at fracture intersections, rather than on the individual finite 
elements within each fracture.   

All reactive transport scenarios in the CPM are also available in the DFN.  These can be used to 
calculate and output Smart Kd values for radionuclide transport calculations (radionuclide transport 
is not yet implemented in the DFN but it is a likely future development).   

In the DFN, reactive transport (like other forms of transport) may be calculated in both steady state 
and transient calculations, whereas CPM reactive transport is only implemented for transient 
calculations. 

6.16.2 Rock Matrix Diffusion 
The finite volume rock matrix diffusion algorithm within the DFN is able to calculate chemical 
reactions within the rock matrix.  This is implemented in the DFN by noting the chemical makeup of 
the porewater within each of the finite volume cells representing the matrix and then utilising 
PHREEQC to carry out reactions in each cell. The matrix reactions are carried out at the end of each 
timestep in exactly the same manner as the reactions in the fractures themselves.  Note that the 
temperature is needed for the chemistry calculations and this is assumed to be the same in the rock 
matrix as it is in the fracture.  

6.16.3 Mineral Quantities 
Mineral quantities are assigned a uniform quantity across the model, which defaults to 10.0 mol/kgw 
(the PHREEQC default) if not specified. If the initial quantity of a mineral phase is set to zero then it is 
considered to be a secondary mineral, in which case it cannot initially dissolve, but may precipitate 
(and possibly subsequently dissolve) as the result of a chemical reaction. 

If the quantities of the minerals change as a result of chemical reactions then the variable values 
associated with the minerals are updated accordingly. However, the mineral quantities are 
maintained internally by iPhreeqc. 
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Note that minerals quantities may not be uniformly distributed throughout a geological system but 
may vary, for example by rock type or depth.  In CPM calculations it is possible to define these 
quantities as variables but this has not as yet been implemented for DFN calculations.   
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7 Concepts within Combined Models 

7.1 Nesting of Sub-Models 
The capabilities of ConnectFlow for cases using a single concept (DFN or CPM) has been discussed 
in the previous chapters. This chapter discusses the case where both concepts are used in a single 
model. The model can be constructed with sub-models that use distinct concepts either CPM or 
DFN. That is, the model can be split into 2 different domains: one that uses the CPM concept, and 
one that uses the DFN concept. However, DFN and CPM approaches cannot be used 
simultaneously in any part of the domain. Figure 7-1 to Figure 7-3 show a few alternative 
configurations. 

 

Figure 7-1:A unified CPM/DFN ConnectFlow model using a CPM to represent a sedimentary cover overlying a fractured basement. Here 
the grid and fractures are coloured according to head distribution. 

 
Figure 7-2: View of a model of two adjacent access tunnels being modelled using ConnectFlow. In this case, the inner region is being 
modelled (in detail) using a fracture network approach, the outer surrounding region (the far-field) by a porous media. The CPM region 
and the fractures are coloured by the pressure distribution on the surface of the model. 
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Figure 7-3: A CPM representation of a modelled tunnel (shown in the centre of the figure), embedded within a DFN model. The different 
colours in the CPM model relate to different properties for tunnel excavated damage zone, skin and actual tunnel. Many fractures have 
been removed to more clearly illustrate the tunnel. 

These figures illustrate the flexibility of ConnectFlow. The benefits of this flexibility include: 
12) being able to use the most appropriate concept for different lithological units for sedimentary 

settings, e.g. a fracture basement covered by a sedimentary cover; 
13) the ability to switch easily between concepts to quantify conceptual uncertainties in using a 

CPM versus DFN model to calculate performance measures; 
14) in using a single software package to implement DFN and CPM models it is easier to 

compare consistency between equivalent representations; 
15) the flexibility to nest detailed models of important areas, e.g. a fractured near-field within a 

much larger CPM domain to capture realistic boundary conditions and guarantee rigorous 
coupling between the sub-models; 

16) the ability to nest an appropriate CPM representation of engineered structures, such as 
repositories within a detailed DFN model. 

Again, the ConnectFlow concept is that different regions can be represented in different ways and 
then formally nested together. This is different from the case where discrete fracture objects co-exist 
with a porous medium model of the rock matrix. Representations of the interaction between 
fractures and the rock matrix within the same domain can be represented in ConnectFlow, but it 
should be recognised that this is a quite different issue. Fracture/matrix interactions are dealt with in 
the CPM and DFN modules in different ways as described in section 2.6.4 for the CPM module. In 
the DFN module, the rock matrix can be represented by either special sets of fractures (matrix 
fractures) or by using a finite-difference approach (as described for CPM models in section 4.6.1). 

In a combined DFN/CPM model, flow in the DFN and CPM models is nested formally by internal 
boundary conditions at the interface between the two sub-regions. These boundary conditions are 
implemented as equations that ensure continuity of pressure and conservation of mass at the 
interface between the two sub-regions. On the DFN side of the interface, these boundary conditions 
are defined at nodes that lie along the lines (traces) that make up the intersections between 
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fractures and the interface surface. On the CPM side, the boundary conditions are applied to nodes 
in finite-elements that abut the interface surface. Thus, extra equations are added to the discrete 
system matrix to link nodes in the DFN model to nodes in the finite-element CPM model. By using 
equations to ensure both continuity of pressure and continuity of mass, then a more rigorous 
approach to nesting is obtained than by simply interpolating pressures, say, between separate DFN 
and CPM models. The equations used in the nesting are described in section 7.3. 

7.2 Representation of Fractures 
The DFN module is described in detail in Chapter 5.  For the purpose of this chapter, the 
representation of fractures can be summarized as follows.  Fractures are represented as explicit 
planar objects with either a rectangular or triangular shape. Each fracture plane is described by the 
following attributes: 

17) Geometry: defined by centre position, strike, dip, orientation (a rotation within the plane of 
the fracture), strike length, dip length and shape. Alternatively, a fracture can be defined by the 
positions of its corners. 

18) Flow properties: defined by either hydraulic aperture or transmissivity, based on a parallel 
plate concept. Additional parameters include storativity and transport aperture, which are 
defined in terms of one of a choice of models and the associated parameters. 

19) Additional: the fracture set is stored for each fracture. Also, fractures can be subdivided into 
sub-fractures to represent fracture roughness or channelling. In this case, a reference to the 
original unsubdivided fracture is stored. 

Fractures can be generated in several ways either as deterministic fractures defined individually or 
as stochastic sets of fractures with their attributes defined in terms of probability distribution 
functions (PDFs) for each fracture attribute. Deterministic fractures can be input in terms defining 
the attributes of each fracture individually or by reading a formatted file. 

The DFN concept is that fluid flow passes through a rock volume primarily via the interconnected 
network of fracture objects, there is no flow through the inter-fracture volumes. Hence, the DFN 
model has to include all fractures that contribute significantly to flow on the scale of interest. An 
example of a DFN model is shown in Figure 7-4.  
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Figure 7-4: An example of a simple DFN model within a cube. Here, two stochastic sets of fractures are generated both sub-vertical but 
with different mean strikes. Fractures are coloured by set. 

In order to construct nested models of the same fractured rock (mixing DFN and CPM sub-regions), 
then the data used for the DFN and CPM models should be self-consistent. For example, if a 
repository scale DFN model is nested within a stochastic continuum model, then flow statistics on an 
appropriate scale, the size of the elements in the CPM model, need to be consistent. This is achieved 
by using parameters to represent the stochastic continuum (mean, standard deviation, correlation 
length) that are obtained by upscaling the DFN model on the scale of the CPM elements. To ensure 
consistency of how larger scale fractures zones are represented when they cross between DFN and 
CPM models then the fracture zone geometries have been defined consistently. An easy way of 
doing this is to use the IFZ format to define such fracture zones in a file, as both modules can read 
this format. This is achieved by specifying that the IFZ file can be read into both parts of the model. 
The parts of a fracture within each sub-region are calculated automatically. 

Figure 7-5 shows an illustration of how a large deterministic fracture that crosses between DFN and 
CPM sub-regions can be modelled in such a way as to ensure there is continuity in its representation, 
and hence in flow between the regions. 
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Figure 7-5: Schematic illustration of continuity of fracture zones across a CPM/DFN interface in a ConnectFlow model. The DFN region is 
to the right with a CPM grid to the left. A few fractures are shown in red and orange in the DFN region. The red fractures may be stochastic 
for example. The orange fracture is a deterministic fracture that crosses the interface. On the DFN side it is shown as a plane, while on the 
CPM side it is drawn with its actual thickness. The elements crossed by the fracture zones are coloured yellow. Permeability in these 
elements will be modified in the IFZ method to represent the effect of the fracture zone on flow. 

7.3 Current Physics 

7.3.1 CPM Physics 
In CPM-only models a wide range of physics are implemented as described in Chapter 3, including: 
20) Saturated groundwater flow; 
21) Unsaturated groundwater flow; 
22) Dual porosity flow; 
23) Coupled groundwater flow and salt transport (variable density flow); 
24) Coupled groundwater flow and heat transport; 
25) Radionuclide transport with chains, decay, sorption and solubility limitations; 

7.3.2 DFN Physics 
A more restricted range of physics is currently available for DFN models, as described in Chapter 6: 
26) Saturated groundwater flow; 
27) Unsaturated groundwater flow; 
28) Coupled groundwater flow and salt transport (variable density flow); 

7.3.3 Nested DFN/CPM physics 
For nested models, currently only saturated groundwater flow with linear boundary conditions is 
supported. The coupling between DFN and CPM regions at their common interface is implemented 
as additional equations that link residual pressure values at nodes in the fracture planes to pressure 
values in the CPM finite-element mesh. These equations ensure continuity in pressure and 
conservation of groundwater flux (i.e. mass flux) across the interface. Figure 7-6 shows this 
configuration.  
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Figure 7-6: Sketch of coupling between DFN and CPM sub-models. A finite-element CPM mesh is shown on the left. The right-hand 
surface is intersected by a single fracture plane. Extra equations are used to link the DFN to the CPM. These equations are applied at 
nodes (dark green points) in the fracture plane along the intersection (dark green line). 

The steps in coupling the two regions are: 
29) Calculate the intersections of fractures with the boundary of the DFN region. 
30) Select the surfaces of the DFN region that abut the CPM region and specify a coupling type 

boundary condition. 
31) For each fracture that intersects these DFN region surfaces, identify the CPM finite-elements 

that abut the fracture. A single fracture may abut several elements, or several fractures may abut 
the same element. 

32) Add extra equations to the discrete system matrix to link the pressure values at nodes on the 
fracture intersects with the pressure values in the adjoining finite-elements. 

33) Solve the discrete system matrix. 

Hence, extra internal boundary conditions have to be specified for a nested model to link DFN and 
CPM regions. 

7.4 Boundary Conditions 

7.4.1 DFN Equations 
The DFN equation for the ith global flow node is given by 

∫∑𝜌0
𝜏

𝜇
∇Ψ𝑖∇Ψ𝑗𝑃�̅�

𝑗Ωf

− ∫ Ψ𝑖𝐹 = 0

𝜕Ωf

 
Equation 7-1 

where 𝛺𝑓 is the DFN subdomain, ∂Ωf is the boundary of the DFN subdomain, ρ,  is the groundwater 
density,  is the fracture transmissivity, μ,  is the fluid viscosity, Ψj, is the linear basis function for the 
global flow nodes on the fracture, �̅�𝑗  is the DFN residual pressure at the jth global flow node and F is 
the consistent mass flux out of the fractures for those fractures that intersect the boundary. The 
summation in j is taken over the global flow nodes on the fracture 

𝐹 =∑𝑓𝑖Ψ𝑖𝜕Ωf
 Equation 7-2 

A new mass-flux freedom f is introduced into the DFN discrete system at each global flow node on 
the boundary at which a Dirichlet type boundary condition has been set. Therefore, on the boundary 
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between the region containing the fractures and the region containing the equivalent porous 
medium there are two DFN freedoms per global flow node; the pressure and flux. 

7.4.2 CPM Equations 
The CPM equation for the ith degree of freedom is 

𝜌0 (∫∑
𝑘

𝜇
∇𝜑𝑖∇𝜑𝑗𝑃

𝐸
𝑗 −∫𝜙𝑖𝒗 ∙ 𝒏) = 0 

Equation 7-3 

where k is the permeability, 𝑃𝐸𝑗 and 𝜑𝑗  are the CPM pressure and finite-element basis functions 
evaluated at the jth degree of freedom on the element respectively. Ω is the CPM subdomain, ∂Ω is 
the boundary of the CPM subdomain, v is the darcy velocity, n is the unit outward normal on the 
CPM boundary. For the CPM equations, the summation j is taken over the degrees of freedom. 

7.5 Interface Conditions 

7.5.1 Approach 1 (“Mass Lumping”) 
The basic requirement linking the CPM and DFN subdomains are continuity of pressure and 
conservation of mass. One approach to achieve this is to distribute the mass across the interface 
over a set of discrete point sources, namely the set of DFN global flow nodes on the interface.  Hence 
by writing, 

𝐹′ =∑𝑓𝑖
𝑖

𝛿(𝒙 − 𝒙𝒊) 
Equation 7-4 

Equation 7-1 becomes 

∫∑∇Ψ𝑖∇Ψ𝑗𝑃�̅� − 𝑓𝑖 = 0

𝜕Ωf

 
Equation 7-5 

Conservation of mass across the interface requires 

𝜌0 (∫∑
𝑘

𝜇
∇𝜑𝑖∇𝜑𝑗𝑃�̅�) −∑𝜑𝑖(𝑥𝑗)𝑓𝑗

𝑗

= 0 
Equation 7-6 

Continuity of pressure at the interface requires 

𝑃�̅� =∑Ψ𝑗(𝑥𝑖)

𝑗

𝑃𝐸𝑗 
Equation 7-7 

Hence the solution to Equation 7-5 and Equation 7-6 are the constraints for the discrete interface 
problem. 

This approach amounts to interpolating the pressures from the CPM model at the DFN global flow 
nodes on the interface and ‘mass-lumping’ the flux between the two regions into point sources at the 
global flow nodes.  
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7.5.2 Approach 2 (“Distributed Flux”) 
Alternatively, it is more precise to insert F from Equation 7-2 into Equation 7-3 to get 

∫∑
𝑘

𝜇
∇𝜑𝑖∇𝜑𝑗𝑃

𝐸
𝑗 − ∫ 𝜑𝑖𝐹 = 0

𝜕Ω

 
Equation 7-8 

In this case, F is a line source of mass into the CPM element in which the ith freedom lies, distributed 
along the lines of intersections with the fracture planes. Thus the second term in Equation 7-8 may 
be written as 

∫ 𝜑𝑖Ψ𝑗𝑓𝑗𝑑𝑙

𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒

 
Equation 7-9 

where the integral is along the trace of the fracture on the finite-element boundary, and the 
summation is over the fractures that abut the current finite-element. 

The following condition is consistent with the above treatment of conservation of mass. If we take a 
weighted residual approach to the continuity of pressure 

∫Ψ𝑖(𝑃
𝐸 − �̅�)𝑑𝑙 = 0 Equation 7-10 

where I ranges over all the global flow node on the edge of the fracture, the integral is along the trace 
of the fracture on the finite-element boundary, 𝑃𝐸  is the CPM pressure and �̅� is the DFN pressure. 

Since  

𝑃𝐸 =∑𝜑𝑖𝑃
𝐸
𝑖

𝑖

 

�̅� =∑Ψ𝑖�̅�𝑖
𝑖

 

Equation 7-11 

Equation 7-9 and Equation 7-10 imply 

∫ ∑Ψ𝑖𝜑𝑗𝑃
𝐸
𝑗

𝑗

𝑑𝑙

𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒

− ∫ ∑Ψ𝑖Ψ𝑗�̅�𝑗
𝑗

𝑑𝑙

𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒

= 0 
Equation 7-12 

Note that the cross terms in the interface problem are transposes of each other. The second 
approach to distributing the flux along the fracture is more robust than the first since it distributes 
the flux from the DFN fractures along the trace of the fracture on the CPM elements that it abuts. 
Thus, if a long fracture abuts many CPM elements then this approach ensures an appropriate 
amount of flux enters or exits each element. 
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7.6 Transport 
Particle tracking algorithms for advective transport of a solute are implemented for both the CPM 
and DFN concepts. In CPM models, particles can be tracked in 3 different ways. 
34) A deterministic method by moving along a discretised path with a local finite-element 

velocity field. At each discrete section of the path, the local velocity vector is calculated, and then 
the particle is moved with that velocity for an appropriate time-step.  

35) A mass-conserving deterministic method by moving along a discretised path using velocities 
calculated using the mass-conserving Cordes-Kinselbach algorithm (as described in section 4.4). 
These velocities are constant across tetrahedral sub-elements.  

36) A mass-conserving stochastic method, again using the Cordes-Kinselbach algorithm, to 
calculate the particle velocities (as described in section 4.5).  The difference with this 
implementation is that particles are constrained to travel between transport nodes defined on the 
surface of each element.  The stochastic nature of this method arises when a particle is tracked 
from a transport node.  Each particle is given four different start points that are slightly perturbed 
from the original location of the transport node.  Consequently the particle can sometimes have 
more than one destination node.  For a given realisation, the destination picked is determined 
using weightings for each destination (determined by the number of start points that send the 
particle there) and a calculated pseudo-random number. 

In DFN models, a stochastic ‘pipe’ network type algorithm is used. Particles are moved between 
pairs of fracture intersections stepping from one intersection to another. At any intersection there 
may be several possible destinations that the particle may potentially move to next as flow follows 
different channels through a fracture. A random process, weighted by the mass flux between pairs of 
intersections (connected by a ‘pipe’), is used to select which path is followed for this particular 
particle. Hence, there is explicit hydrodynamic dispersion process built into the transport algorithm 
used in the DFN module. The time taken to travel between any two intersections, the distance 
travelled and flow-wetted surface are calculated for each pipe based on flow rates and geometries. 
The pipe network is created using either an exact approach (section 6.12.1 or section 6.12.2) or an 
approximate approach (section 6.12.3). 

In a nested ConnectFlow model particles can be traced through both DFN and CPM regions 
continuously, using the appropriate algorithm according to the region the particle is currently in.  

Note particles starting at a given coordinate in the DFN region are very unlikely to be located in a 
fracture, so that they have to be started in a nearby fracture to ensure they are in a flow channel. 
This process can be controlled by the user by specifying a ‘search radius’ around the start point for a 
list of potential fractures to start the particle in. Particles can then be started from fractures in this 
list by selecting them according to a flux weighting. 
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8 Simulation Setup and Execution 
Input to ConnectFlow is specified using a structured free-format input language, which has been 
designed to be readily comprehensible to the user. Input files can be created manually or via a 
graphical user interface described in section 8.1. The input data specifies the finite-element grid, 
the variables of interest, the boundary conditions, the processes to be modelled, generation of 
fractures and properties, and the outputs required. 

The input language allows the user to specify the execution of the program in a flexible manner.  The 
individual components of a run (model generation, specification of processes to be modelled, output 
required, etc.) can be specified in any logical order and may appear more than once in any run.  The 
results of a calculation may be saved for later post-processing or for use as an initial condition in a 
later calculation.  An existing model may be modified and the results of a calculation may be 
interpolated from one finite-element grid to another. 

The full set of ConnectFlow commands and their syntax is recorded in the Command Reference 
Manual that is available as an on-line HTML document. Hypertext links are used in such a way as to 
show the hierarchy of commands. 

The ConnectFlow executable can be used to run pure CPM (>> CPM CONCEPT), pure DFN (>> DFN 
CONCEPT) or combined ConnectFlow (>> COMBINED DFN AND CPM CONCEPT) input datasets, 
using the top-level commands as indicated. Jobs can be run in batch using a command line 
executable on either Linux or Windows. Alternatively, the Graphical User Interface (GUI) is available 
for both creating input data and submitting jobs to a specified computer. 

The names NAMMU and NAPSAC are historic and reflect the initially separate developments of the 
codes. Now that they are combined in ConnectFlow, they are largely superseded but may still be 
encountered in some circumstances. The acronym NAMMU stands for ‘Numerical Assessment 
Method for Migration Underground’.  NAMMU was also the name of the Sumerian goddess of the 
abyssal waters, whose name was expressed by the ideogram for ‘sea’ [Jacobson, 1949].   

8.1 ConnectFlow Graphical User Interface 
The intention of the graphical user interface (GUI) is to make it easier for the new user to define a 
model without having learn the input language structure and syntax (Figure 8-1). The GUI is 
organised in an object based approach where objects represent the base building blocks of a model 
such as grids, fracture sets, deterministic fracture zones, lithological units etc. The GUI provides a 
framework for defining the properties of each object side using panels, and storing the data within a 
project. A particular model is then a collection of objects. The input commands to define the model 
are created automatically when a job is run as a pre-processing step. 
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Figure 8-1: ConnectFlow GUI window 

The GUI has been designed so that is very simple to create alternative concepts within the same 
domain, such that it is fast to switch between CPM, DFN and combined DFN/CPM models (e.g. 
Figure 8-2). 
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Figure 8-2: The ConnectFlow window for defining rock properties. This makes it simple to define whether a rock is to be represented by 
CPM or DFN concepts. 

The steps in setting up a ConnectFlow model typically are as follows: 
1. Create a model and select the type of simulation required. 

2. Set up a model domain made up of cells or patches with each cell/patch assigned to a rock 
type. 

3. For each rock, select which type of representation, CPM or DFN, is to be used. Define the 
hydrogeological parameters e.g. permeability, porosity. There may be several instances of a 
rock type with either different concepts or properties to quantify conceptual and parametric 
uncertainties. 

4. Define deterministic fracture geometries and parameters. 

5. Define stochastic fracture sets. 

6. Solve for flow and transport for the model. 

7. Visualise the output. 

There are other facilities available in ConnectFlow, such as exporting fracture geometries and 
upscaling DFN models to obtain equivalent CPM permeabilities. The full facilities are described in 
the GUI online help, including a user guide and tutorials. 
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9 Output 
The output from ConnectFlow currently takes four forms: 

37) Text files containing information about the model, the performance of the solver and any 
output options requested; 

38) ASCII files used to export results such as transport statistics, pathlines, grids, fracture 
geometries, upscaled equivalent permeabilities from DFN models; 

39) Binary files that contain models, solutions, particle tracking libraries, generated physical 
properties. 

40) Postscript graphics files. 

The binary files and some of the ASCII files can be used for further runs or for visualisation using the 
3D visualisation package.  This is a fully interactive tool with the capability of displaying and 
manipulating images of the ConnectFlow model on the screen.   

Some images generated with the visualisation package have been shown earlier in the report, in 
particular in section 7.1 for nested models. In the following sections, specific outputs for DFN 
models and CPM models are listed, together with some further visualisations. 

9.1 CPM Outputs 
A wide variety of output options are available for CPM models.  These include: 

41) Plots of the finite-element grid; 
42) Plots of the grid with elements shaded according to rock type; 
43) Plots showing planar slices through three-dimensional grids; 
44) Plots showing the grid surface or certain internal surfaces for three-dimensional grids; 
45) Plots of the grid boundary; 
46) Shaded plots or contour lines of scalar functions of the variables; 
47) Plots of vector quantities; 
48) One-dimensional line graphs of scalar functions of the variables along a line; 
49) One-dimensional line graphs of scalar functions of the variables as a function of time; 
50) Plots of advective pathlines; 
51) Calculation of capture zones; 
52) Mass balance calculations; 
53) A number of options for colouring plotted quantities, for example, according to the values of 

the variables, scalar functions of the variables and user defined functions of the variables; 
54) Superimposing any combination of plots, and addition of user-defined text and lines to build 

up complex images. 

The finite-element model and the modelled results can also be visualised in 3D.  The following 
figures illustrate some of the types of pictures that can be produced for CPM models by the 3D 
visualisation package. 
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Figure 9-1: Shaded contour plot of groundwater head. 

 
Figure 9-2: Pathlines for a model based on the grid shown in Figure 4-2. 
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Figure 9-3: Complex image for a 3D version of the model shown in Figure 4-3, showing (i) a slice through the grid, (ii) a surface of constant 
salinity and (iii) a number of pathlines. 

 
Figure 9-4: Isosurfaces of pressure for the model shown in Figure 4-3. 

9.2 DFN Outputs 
The problems modelled by ConnectFlow can be highly complex, so it is useful to have a variety of 
ways of displaying output from the model, in order to facilitate the interpretation of results.  

9.2.1 Standard Output File 
During the model generation and calculation phases of a DFN model run, text based summary 
output is written to the ASCII standard output file (.out file), as for any ConnectFlow run. This 
contains information such as a summary of the statistical properties of the fractures generated, 
groundwater fluxes through surfaces, pressures and fluxes to engineered features. Some output 
options generate further text based output, such as the option to sample fractures along 
hypothetical cores.  
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9.2.2 Graphical Output 
Most output options produce graphical output via an internal graphics package that creates flat plot 
(2D) images in PostScript format.  

Some options draw perspective diagrams illustrating views of the network in three dimensions. The 
user has complete flexibility to specify the point from which the network is observed, but may instead 
choose from a set of standard view options. For clarity, lines hidden from the observation point by 
other parts of the network are not shown in the picture. 

9.2.3 Inspecting the Network 
There are several options that allow detailed inspection of the fracture-network, including one that 
simply draws a perspective diagram of either the whole system or a specified subset of fractures. 
Another option (“trace mapping”) can be used to examine any (plane) cross-section through the 
network. As well as producing a diagram showing where fractures intersect the cross-section, it can 
scan along selected lines in the plane, reporting information on all the intersections encountered. 

This information consists of the distance from the start of the scan line, and the angle at which the 
fracture was crossed, and the length of the intersection of the fracture with the cross-section plane. 

There is also a facility for probing the network with line segments similar to boreholes. The “core 
logging” option produces both geometrical and hydraulic information for all fractures crossed by the 
line segment.  This includes the distance from the start of the segment, the dip direction and dip 
angle of the fracture, the angle relative to the core, the fracture set number, the aperture and 
transmissivity of the fracture. 

Another option is useful when simulating the local variation of the aperture over individual fractures. 
This produces maps of the aperture width on one or more fractures, with contours at equal intervals 
of the logarithm of the aperture. In addition, one can request the printing of data on the two-point 
correlation of apertures. 

9.2.4 Examining the Pressure and Flow Solutions 
There are many options available to display the flow solution.  The user may request a plot of the 
fracture-network showing pressure contours or flux vectors, represented by arrows, on fractures.  
Plots of pressure on individual fractures may also be requested.  Pressure profiles in which graphs of 
pressure against distance along a line segment through the network are plotted can be drawn for 
steady-state and transient flow options.  Plots of pressure at a point against time are also available. 
When locally-varying apertures are specified, histograms of fluxes across a line within a fracture can 
be plotted. 

The “pipe” model is a tool for analysing the solution of the flow problem by representing each of the 
fractures in the network by a collection of pipes. Every pair of intersections in a fracture is connected 
by a set of pipes, which contains a pipe joining every node on one intersection with every node on the 
other. It should be understood that the fluxes in the pipes only represent an approximation to the 
flow field in the fracture. They are computed from exact solutions of the pressure at the nodes and 
the global response matrices. The pipe model can be used to estimate the flux that crosses a series 
of parallel plane rectangular surfaces. 

9.2.5 Tracer Transport 
Several types of diagram are available for displaying the results of tracer transport simulations.  To 
look at the results of a large swarm of particles sent through the network, graphs showing the 
proportion of particles leaving the network as a function of time or path length are available. The 
number of particles is scaled by the total number released to show a “breakthrough curve”. A 
cumulative arrival curve is plotted by integrating the number of particles arrive as a function of time.  
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This plot also includes a curve derived by fitting an analytical solution of the advection-dispersion 
equation to the times by which 25% and 75% of the particles have left the system. 

A three-dimensional view of the network showing the swarm of particles at user specified times or a 
diagram of a boundary surface showing the arrival of particles can also be selected.  Individual 
particle tracks can be investigated by producing a three-dimensional plot showing the tracks or by 
plotting graphs showing aperture against time or distance for individual particle tracks. 

9.2.6 3D Visualisation 
The most powerful way to understand and interpret the results of a 3D network simulation is 
naturally to visualise the results in 3D. A complementary 3D visualisation software package has been 
developed specifically for ConnectFlow. This is described in the next section. 

The visualisation package displays in 3D all the features in a DFN model, including the model region, 
fractures, engineered features and upscaling, and their associated scalar and vector data. It is also 
able to carry out calculations on the model, including clustering, pathlines, and flux through a plane. 
In addition to displaying the DFN model features, it is also possible to overlay external data, such as 
maps. 

The capabilities of the visualisation package for DFN models include the interactive 3D visualisation 
of the following: 
55) the fracture-network with each fracture coloured according to transient or steady-state 

properties such as aperture or pressure; 
56) a reduced network with removal of fractures according to location or properties; 
57) engineered features; 
58) upscaling; 
59) pathlines generated from multiple user-defined sources; 
60) slices through the model; 
61) clustering around engineered features or points. 

A snapshot of any screen can be saved as a 3D image using VRML  (Virtual Reality Modelling 
Language) format. The saved image can be viewed and manipulated in 3D using a web browser (for 
example Netscape). Alternatively, the screen can be saved in a 2D format such as PNG, JPEG, or 
PostScript. 2D images can be combined to create animated movies. 
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Figure 9-5: A DFN model coloured by residual pressure in ConnectFlow. 
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10 Nomenclature and Units 
By default, ConnectFlow uses SI units, except that Celsius is used for temperature. 

Symbol Definition Units 

AKR constant in CPM default relative permeability model Pa𝑆𝐾𝑅  

APC constant in CPM default capillary pressure model Pa𝑆𝑃𝐶  

BKR constant in CPM default relative permeability model Pa𝑆𝐾𝑅  

BPC constant in CPM default capillary pressure model Pa𝑆𝑃𝐶  

b effective aquifer thickness (see Equation 3-10) m 

c concentration (or mass fraction) of dissolved solute (normally salt) – 

c0 specified inflow concentration for solute (normally salt) – 

cl specific heat capacity of the fluid J kg-1K-1 

cs specific heat capacity of the rock solids J kg-1K-1 

𝑫 dispersion tensor for solute (normally salt) m2s-1 

𝑫′ dispersion tensor for heat W m-1K-1 

Di intrinsic (or effective) diffusion coefficient m2s-1 

Dm molecular diffusion coefficient for solute (normally salt) m2s-1 

Dm molecular diffusion coefficient for nuclide  m2s-1 

𝑫𝜶 dispersion tensor for nuclide  m2s-1 

FA advective radionuclide flux mol m-2s-1 

FC flux of solute (normally salt) kg m-2s-1 

FD diffusive radionuclide flux mol m-2s-1 

𝐹𝑁𝛼  flux of nuclide  mol m-2s-1 

FP fluid flux kg m-2s-1 

FT heat flux W m-2 

f Source term for nuclide  mol m-3s-1 

g gravitational acceleration m s-2 

g magnitude of gravitational acceleration m s-2 

H heat source W m-3 

h hydraulic head m 

I maximum potential infiltration rate m s-1 

Kd sorption distribution coefficient (literature Kd multiplied by rock density) – 

Kd, sorption distribution coefficient for nuclide  – 

k rock permeability tensor m2 

kr Relative permeability (see section 3.4) – 

kv vertical permeability of semi-permeable layer m2 
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Symbol Definition Units 

L arbitrary transition thickness m 

N concentration of nuclide  mol m-3 

N0 specified inflow concentration for nuclide  mol m-3 

n outward normal to a specified boundary – 

PE capillary entry pressure Pa 

PR residual fluid pressure Pa 

PRr,i residual fluid pressure at node i of an element on the interface of a 
regional-scale mesh 

Pa 

PRs,i residual fluid pressure at node i of an element on the interface of a site-
scale mesh 

Pa 

PT total fluid pressure Pa 

TP0  reference total fluid pressure Pa 

Q Source term (in 2D areal model of groundwater flow, see section 3.1.4) kg m-2s-1 

q specific discharge (or Darcy velocity) m s-1 

qz vertical component of specific discharge m s-1 

R retardation factor for nuclide  – 

S saturation – 

SKR constant in CPM default relative permeability model – 

SPC constant in CPM default capillary pressure model – 

Sres residual saturation – 

S function of saturation used in Van Genuchten relative permeability 
model (see Equation 3-21) 

– 

T temperature °C 

T0 reference temperature °C 

t Time s 

v average porewater velocity m s-1 

v magnitude of porewater velocity m s-1 

vi i-component of porewater velocity m s-1 

z elevation m 

z0 reference elevation m 

zb elevation of bottom of aquifer m 

zs elevation of ground surface m 

zt elevation of top of aquifer m 
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Symbol Definition Units 

 compressibility of freshwater Pa-1 

L longitudinal dispersion length for solute (normally salt) m 

α′L longitudinal dispersion length for heat m 

L longitudinal dispersion length for nuclide  m 

T transverse dispersion length for solute (normally salt) m 

α′L transverse dispersion length for heat m 

T transverse dispersion length for nuclide  m 

c compressibility of saturated fluid (normally brine) Pa-1 

 coefficient of volumetric expansion of freshwater K-1 

c coefficient of volumetric expansion of saturated fluid (normally brine) K-1 

a average thermal conductivity of the rock and fluid W m-1K-1 

l thermal conductivity of the fluid W m-1K-1 

s thermal conductivity of the rock W m-1K-1 

 constant in relative permeability models – 

1 viscosibility K-1 

ij Kronecker delta – 

 Penalty weight (0.01) – 

φ porosity – 

φ0 reference porosity – 

 decay constant for nuclide  s-1 

 fluid viscosity Pa s 

0 reference fluid viscosity Pa s 

0 reference (freshwater) fluid density kg m-3 

c0 Density of solute-saturated fluid (normally saturated brine) kg m-3 

l fluid density kg m-3 

s Density of the rock solids kg m-3 

(c)a average heat capacity of the rock and liquid J m-3K-1 

 tortuosity – 

 Degree of implicitness of Crack-Nicholson solution method – 

r,ij finite element basis function evaluated for node j of an element on the 
interface of a regional-scale mesh at the position of node i of an 
adjoining element in a site-scale mesh 

– 
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